已知函数是不同时为零的常数),其导函数为。(1) 当a=时,若存在,使得>0成立,求b的取值范围;(2) 求证:函数y=在(-1,0)内至少存在一个零点;(3) 若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3="0," 关于x的方程在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围。
已知函数f ()=, 若2)=1; (1) 求a的值; (2)解不等式.
(本小题满分12分)已知,其中均为实数, (Ⅰ)求的极值; (Ⅱ)设, 求证:对恒成立; (Ⅲ)设,若对给定的,在区间上总存在使得成立,求m的取值范围.
(本小题满分12分)如图,椭圆的右焦点与抛物线的焦点重合,过且于x轴垂直的直线与椭圆交于S,T,与抛物线交于C,D两点,且 (Ⅰ)求椭圆的标准方程; (Ⅱ)设P为椭圆上一点,若过点M(2,0)的直线与椭圆相交于不同两点A和B,且满足(O为坐标原点),求实数t的取值范围.
(本小题满分12分)已知E是矩形ABCD(如图1)边CD上的一点,现沿AE将△DAE折起至△D1AE(如图2),并且平面D1AE⊥平面ABCE,图3为四棱锥D1—ABCE的主视图与左视图. (Ⅰ)求证:直线BE⊥平面D1AE; (Ⅱ)求点A到平面D1BC的距离.
(本小题满分12分)已知数列的前项和为,向量,,满足条件,且. (Ⅰ)求数列的通项公式; (Ⅱ)设函数,数列满足条件, ①求数列的通项公式; ②设,求数列的前和.