(本小题满分14分)设等差数列的前项和为且.(1)求数列的通项公式及前项和公式;(2)设数列的通项公式为,问: 是否存在正整数t,使得成等差数列?若存在,求出t和m的值;若不存在,请说明理由.
.已知等差数列满足:数列的前n项和为. (1)求及; (2)令,求数列的前n项和.
如图,在四棱锥中,,四边形为平行四边形,,, (1)若为中点,求证:∥平面 (2)求三棱锥的体积
已知函数 (1)若,且,求的值; (2)求函数的最小正周期及单调递增区间.
(Ⅰ)求直线:与两坐标轴所围成的三角形的内切圆的方程; (Ⅱ)若与(Ⅰ)中的圆相切的直线交轴轴于和两点,且. ①求证:圆与直线相切的条件为; ②求OAB面积的最小值及此时直线的方程.
(本小题满分14分)已知两圆和 (1)m取何值时,两圆外切; (2)m取何值时,两圆内切; (3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.