(本小题满分12分)设函数.(Ⅰ)求函数f (x)在点(0, f (0))处的切线方程;(Ⅱ)求f (x)的极小值;(Ⅲ)若对所有的,都有成立,求实数a的取值范围.
已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点.(1)用向量法证明E、F、G、H四点共面;(2)用向量法证明: BD∥平面EFGH;(3)设M是EG和FH的交点,求证:对空间任一点O,有.
正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.
如图,在△ABC中,设=, =, =,=λ,(0<λ<1), =μ (0<μ<1),试用向量,表示.
已知两点M(-1,0),N(1,0),且点P使成公差小于零的等差数列.(1)点P的轨迹是什么曲线?(2)若点P坐标为(x0,y0),Q为与的夹角,求tanθ
p:-2<m<0,0<n<1;q:关于x的方程x2+mx+n=0有2个小于1的正根,试分析p是q的什么条件。(充要条件)