我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,…,9填入3×3的方格内,使三行、三列、二对角线的三个数之和都等于15,如图1所示,一般地,将连续的正整数1,2,3,…n2填入n×n个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方,记n阶幻方的对角线上数的和为N,如图1的幻方记为N3=15,那么N12的值为( )
集合中含有的元素个数为( )
设集合A={x||x-a|<1,x∈R},B={x|1<x<5,x∈R}.若A∩B=,则实数a的取值范围是( )
已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁UA)∩(∁UB)等于( ) (A){5,8}(B){7,9} (C){0,1,3} (D){2,4,6}
集合M={x|lgx>0},N={x|x2≤4},则M∩N等于( )
已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )