(本小题满分13分)已知椭圆的短轴长为,且与抛物线有共同的焦点,椭圆的左顶点为A,右顶点为,点是椭圆上位于轴上方的动点,直线,与直线分别交于两点.(I)求椭圆的方程;(Ⅱ)求线段的长度的最小值;(Ⅲ)在线段的长度取得最小值时,椭圆上是否存在一点,使得的面积为,若存在求出点的坐标,若不存在,说明理由.
(本小题满分12分)已知函数. (1)求的最小正周期,并求的最小值及此时x的取值集合; (2)若,且,求的值.
(本小题满分12分)设 求的值.
(本小题满分12分)青少年“心理健康”问题越来越引起社会关注,某校对高一600名学生进行了一次“心理健康”知识测试,并从中抽取了部分学生的成绩(得分取正整数,满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写答题卡上频率分布表中的空格,并补全频率分布直方图; (2)试估计该年段成绩在[70,90)段的有多少人? (3)请你估算该年段的平均分.
(本小题满分10分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (1)若日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人? (2)从这6名工人中任取2人,设这两人加工零件的个数分别为,求的概率.
(本小题满分12分)已知. (Ⅰ)若不等式对任意实数恒成立,求实数的取值范围; (Ⅱ)若,解不等式.