(本小题满分12分)在如图所示的几何体中,平面,∥,是的中点,,,.(Ⅰ)证明平面;(Ⅱ)求二面角的余弦值.图7
已知曲线C1:(为参数),曲线C2:(t为参数). (1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数; (2)若把C1,C2上各点的纵坐标都拉伸为原来的两倍,分别得到曲线.写出的参数方程.与公共点的个数和C公共点的个数是否相同?说明你的理由.
已知函数y=f(x)是定义在区间[-,]上的偶函数,且 x∈[0,]时, (1)求函数f(x)的解析式; (2)若矩形ABCD的顶点A,B在函数y=f(x)的图像上,顶点C,D在x轴上,求矩形ABCD面积的最大值.
如图等腰梯形ABCD的两底分别为AB=10,CD=4,两腰AD=CB=5,动点P由B点沿折线BCDA向A运动,设P点所经过的路程为x,三角形ABP的面积为S. (1)求函数S=f(x)的解析式; (2)试确定点P的位置,使△ABP的面积S最大.
已知为奇函数, (1)求实数a的值。 (2)若在上恒成立,求的取值范围。
设命题p:;命题q: ,若是的必要不充分条件, (1)p是q的什么条件? (2)求实数a的取值范围.