在平面直角坐标系 x o y 中,点 P 到两点 0 , 3 , 0 , - 3 的距离之和等于4,设点 P 的轨迹为 C . (Ⅰ)写出 C 的方程; (Ⅱ)设直线 y = k x - 1 与 C 交于 A , B 两点. k 为何值时 → O A ⊥ → O B ?此时 → A B 的值是多少?
如图,已知四棱锥的底面为菱形,,,.(1)求证:; (2)求二面角的余弦值.
一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.(1)求“抽取的卡片上的数字满足”的概率;(2)求“抽取的卡片上的数字,,不完全相同”的概率.
已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=,b=.(1)求向量a与向量b的夹角的余弦值;(2)若ka+b与ka-2b互相垂直,求实数k的值
设函数的值域为,:对恒成立,若为假,为真,求实数的取值范围。
已知函数().(1)求函数的单调区间;(2)函数在定义域内存在零点,求的取值范围.(3)若,当时,不等式恒成立,求的取值范围