在平面直角坐标系 x o y 中,点 P 到两点 0 , 3 , 0 , - 3 的距离之和等于4,设点 P 的轨迹为 C . (Ⅰ)写出 C 的方程; (Ⅱ)设直线 y = k x - 1 与 C 交于 A , B 两点. k 为何值时 → O A ⊥ → O B ?此时 → A B 的值是多少?
如图,已知点在圆柱的底面圆上,为圆的直径,圆柱的表面积为,,。 (1)求三棱锥的体积。 (2)求异面直线与所成角的余弦值;
中内角的对边分别为,向量且(1)求锐角的大小;(2)如果,求的面积的最大值
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD中点,E点在AB上,平面PEC⊥平面PDC. (Ⅰ)求证:AG⊥平面PCD; (Ⅱ)求证:AG∥平面PEC; (Ⅲ)求点G到平面PEC的距离.
已知集合,,求.
(本小题满分14分)已知函数(为常数,). (Ⅰ)若是函数的一个极值点,求的值; (Ⅱ)求证:当时,在上是增函数; (Ⅲ)若对任意的(1,2),总存在,使不等式成立,求实数的取范围.