在平面直角坐标系 x o y 中,点 P 到两点 0 , 3 , 0 , - 3 的距离之和等于4,设点 P 的轨迹为 C . (Ⅰ)写出 C 的方程; (Ⅱ)设直线 y = k x - 1 与 C 交于 A , B 两点. k 为何值时 → O A ⊥ → O B ?此时 → A B 的值是多少?
(满分14分)如图,在四面体ABCD中,O、E分别是BD、BC的中点, (Ⅰ)求证:平面BCD; (Ⅱ)求异面直线AB与CD所成角的余弦值; (Ⅲ)求点E到平面ACD的距离.
(满分12分)某次体能测试中,规定每名运动员一开始就要参加且最多参加四次测试.一旦测试通过,就不再参加余下的测试,否则一直参加完四次测试为止.已知运动员甲的每次通过率为(假定每次通过率相同). (1) 求运动员甲最多参加两次测试的概率; (2) 求运动员甲参加测试的次数的分布列及数学期望(精确到0.1).
(满分12分) 已知函数. (1)若,求的值; (2)求的单调增区间.
(本小题满分14分) 已知等差数列{an}中,a1=-1,前12项和S12=186. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足,记数列{bn}的前n项和为Tn, 求证: (n∈N*).
(本小题满分14分) 已知函数 (Ⅰ)当求函数的最小值; (Ⅱ)若对任意,都有>0恒成立,试求实数a的取值范围.