编写程序,计算一个学生数学、语文、英语三门课的平均成绩.
已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO、BO分别交直线l:y=x-2于M、N两点,求|MN|的最小值.
已知椭圆=1上任一点P,由点P向x轴作垂线PQ,垂足为Q,设点M在PQ上,且=2,点M的轨迹为C.(1)求曲线C的方程;(2)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于x轴的直线上一动点,且满足=+ (O为原点),且四边形OANB为矩形,求直线l的方程.
如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N. (1)若点C的纵坐标为2,求|MN|;(2)若|AF|2=|AM|·|AN|,求圆C的半径.
已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.
已知直线l:y=x+m,m∈R.(1)若以点M(2,0)为圆心的圆与直线l相切于点P,且点P在y轴上,求该圆的方程;(2)若直线l关于x轴对称的直线为l′,问直线l′与抛物线C:x2=4y是否相切?说明理由.