各项均为正数的数列an,a1=a,a2=b,且对满足m+n=p+q的正整数m,n,p,q都有am+an1+am1+an=ap+aq1+ap1+aq. (1)当a=12,b=45时,求通项an; (2)证明:对任意a,存在与a有关的常数λ,使得对于每个正整数n,都有1λ≤an≤λ.
(本小题满分14分)已知在平面直角坐标系xoy中的一个椭圆,它的中心在原。 (1)求该椭圆的标准方程; (2)若P是椭圆上的动点,求线段PA中点M的轨迹方程; (3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。
(本小题满分13分)已知正方体ABCD-A1B1C1D1, O是底ABCD对角线的交点。 (2)A1C⊥面AB1D1; (3)求
(本小题满分12分)已知:以点为圆心的圆与x轴交于 点O,A,与y轴交于点O,B,其中O为原点。 (Ⅰ) 求证:⊿OAB的面积为定值; (Ⅱ) 设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程。
(本小题满分12分)一个圆锥高h为,侧面展开图是个半圆,求: (1)其母线l与底面半径r之比; (2)锥角; (3)圆锥的表面积
已知是椭圆的左、右焦点,过点作 倾斜角为的直线交椭圆于两点,. (1)求椭圆的离心率; (2)若,求椭圆的标准方程.