(本小题满分12分)已知函数处的切线恰好为轴。(I)求的值;(II)若区间恒为函数的一个单调区间,求实数的最小值;(III)记(其中),的导函数,则函数是否存在极值点?若存在,请找出极值点并论证是极大值点还是极小值点;若不存在,请说明理由。
.(本小题满分13分)一个几何体的直观图及三视图如图所示,分别是的中点. (Ⅰ)写出这个几何体的名称; (Ⅱ)求证:; (Ⅲ)求多面体的体积.
.(本小题满分13分)汽车和自行车分别从地和地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知米.(汽车开到地即停止) (Ⅰ)经过秒后,汽车到达处,自行车到达处,设间距离为,试 写出关于的函数关系式,并求其定义域. (Ⅱ)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?
.(本小题满分13分)已知是矩形,平面,,,为的中点. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成的角.
(本小题满分13分)已知点和直线,求: (Ⅰ)过点与直线平行的直线的方程; (Ⅱ)过点与直线垂直的直线的方程.
如图,椭圆的顶点为焦点为S□= 2S□. (Ⅰ)求椭圆C的方程; (Ⅱ)设直线过(1,1),且与椭圆相交于两点,当是的中点时,求直线的方程. (Ⅲ)设为过原点的直线,是与n垂直相交于P点且与椭圆相交于两点的直线,,是否存在上述直线使以为直径的圆过原点?若存在,求出直线的方程;若不存在,请说明理由.