(本小题满分12分)已知数列满足,(,), 若数列是等比数列. (1)求数列的通项公式; (2)求证:当为奇数时,; (3)求证:().
已知向量,函数·,且最小正周期为. (1)求的值; (2)设,求的值.
有三个新兴城镇分别位于、、三点处,且,,今计划合建一个中心医院,为同时方便三镇,准备建在的垂直平分线上的点处(建立坐标系如图).(1)若希望点到三镇距离的平方和最小,则应位于何处?(2)若希望点到三镇的最远距离为最小,则应位于何处?
已知动圆过定点P(1,0),且与定直线相切,点C在l上. (1)求动圆圆心的轨迹M的方程;(2)设过点P,且斜率为-的直线与曲线M相交于A,B两点.①问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;②当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围.
如图,设点A和B为抛物线上原点以外的两个动点,已知OA⊥OB,OM⊥AB求点M的轨迹方程,并说明它表示什么曲线
已知椭圆的方程为,点的坐标满足过点的直线与椭圆交于、两点,点为线段的中点,求:(1)点的轨迹方程;(2)点的轨迹与坐标轴的交点的个数.