设函数f(x)=2x3-3(a-1)x2+1,其中a≥1.(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值.
设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1)。 求a的取值范围,并在该范围内求函数y=()的单调递减区间.
已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当0<x<1时f(x)<0,且对任意x、y∈(-1,1)都有f(x)+f(y)=f(),试证明:(1)f(x)为奇函数;(2)f(x)在(-1,1)上单调递减.
已知函数f(x)=,x∈[1,+∞(1)当a=时,求函数f(x)的最小值。(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围。
已知倾斜角为的直线过点和点,点在第一象限,。(1)求点的坐标;(2)若直线与双曲线相交于两点,且线段的中点坐标为,求的值;(3)对于平面上任一点,当点在线段上运动时,称的最小值为与线段的距离。已知在轴上运动,写出点到线段的距离关于的函数关系式。
已知函数,其中p>0,p+q>1。对于数列,设它的前n项之和为,且。(1)求数列的通项公式;(2)证明:(3)证明:点,,,,共线