已知等腰梯形PDCB中(如图1),PB=3,DC=1,PB=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面 PAD⊥面ABCD(如图2)。 (1)证明:平面PAD⊥PCD; (2)试在棱PB上确定一点M,使截面AMC,把几何体分成的两部分; (3)在M满足(Ⅱ)的情况下,判断直线AM是否平行面PCD.
如图,已知四棱锥的底面为菱形,,,.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值.
某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取道题,按照题目要求独立完成规定:至少正确完成其中道题的便可通过.已知道备选题中应聘者甲有道题能正确完成,道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;(2)请分析比较甲、乙两人谁的面试通过的可能性大?
已知数列的前项和为,,,.(Ⅰ) 求证:数列是等比数列;(Ⅱ) 设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值.
(本小题满分10分)选修4-5:不等式选讲已知,且,若恒成立,(1)求的最小值;(2)若对任意的恒成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数.(1)将曲线的极坐标方程化为直角坐标方程;(2)若直线与曲线相交于、两点,且,求直线的倾斜角的值.