(CUA)∪B, A∩(CUB).
某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量。若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”。若小区内有至少75%的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区”。已知备选的5个居民小区中有三个非低碳小区,两个低碳小区。 (I)求所选的两个小区恰有一个为“非低碳小区”的概率; (Ⅱ)假定选择的“非低碳小区”为小区,调查显示其“低碳族”的比例为,数据如图1所示,经过同学们的大力宣传,三个月后,又进行了一次调查,数据如图2所示,问这时小区是否达到“低碳小区”的标准?
边长为2的正方形ABCD所在平面外有一点P,平面ABCD,,E是PC上的一点. (Ⅰ)求证:AB//平面; (Ⅱ)求证:平面平面; (Ⅲ)线段为多长时,平面?
已知向量,,函数. (Ⅰ)求函数的最小正周期;(Ⅱ)若,求函数的值域。
已知等差数列中,,,数列中,,. (Ⅰ)求数列的通项公式,写出它的前项和; (Ⅱ)求数列的通项公式。
已知函数,数列是公差为d的等差数列,是公比为q()的等比数列.若 (Ⅰ)求数列,的通项公式; (Ⅱ)设数列对任意自然数n均有,求的值; (Ⅲ)试比较与的大小.