某工厂生产某种产品,已知该产品的月生产量x(t)与1 t产品的价格p(元/t)之间的关系为:p="24" 200-x2,且生产xt的成本为R(元),其中R="50" 000+200x.问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)
已知函数,(). (1)试讨论函数的单调性; (2)设函数,,当函数有零点时,求实数的最大值.
如图,在平面内,,,P为平面外一个动点,且PC=, (1)问当PA的长为多少时, (2)当的面积取得最大值时,求直线BC与平面PAB所成角的大小
在数列{}中,,, (1)求数列的通项公式 (2)设(),求数列的前10项和.
设的内角所对的边长分别为,且,A=,. (1)求函数的单调递增区间及最大值; (2)求的面积的大小
已知函数,() (1)对于函数中的任意实数x,在上总存在实数,使得成立,求实数的取值范围 (2)设函数,当在区间内变化时, (1)求函数的取值范围; (2)若函数有零点,求实数m的最大值.