1. (北京市西城外语学校·2010届高三测试)设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有(Ⅰ)求f(0),判断并证明函数f(x)的单调性;(Ⅱ)数列满足,且,数列满足①求数列通项公式。②求数列的前n项和Tn的最小值及相应的n的值.
ABCD为直角梯形,∠BCD=∠CDA=90°,AD=2BC=2CD,P为平面ABCD外一点,且PB⊥BD. (1)求证:PA⊥BD; (2)若PC与CD不垂直,求证:PA≠PD.
若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m. (1)若x2-1比1远离0,求x的取值范围; (2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab.
已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0,其中至少有一个方程有实根,求实数a的取值范围.
证明:,,不能为同一等差数列中的三项.
设a、b、c均为大于1的正数,且ab=10,求证:logac+logbc≥4lgc.