在△ABC中,角A、B、C的对边分别为a、b、c,已知a+b=5,c=,且4sin2-cos2C=.(1)求角C的大小;(2)求△ABC的面积.
设首项为a1,公差为d的等差数列{an}的前n项和为Sn.已知a7=-2,S5=30. (1) 求a1及d; (2) 若数列{bn}满足an=(n∈N*),求数列{bn}的通项公式.
已知函数( (1)若函数在处有极值为,求的值; (2)若对任意,在上单调递增,求的最小值.
已知圆O:交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交直线于点Q. (1)求椭圆C的标准方程; (2)若点P的坐标为(1,1),求证:直线PQ圆O相切; (3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知中,的对边分别为,且, (1)若,求边的大小; (2)求边上高的最大值.
如图,已知多面体中,平面,平面,,,为的中点 (1)求证:; (2)求多面体的体积.