已知m∈R,复数z=+(m2+2m-3)i,当m为何值时,(1)z∈R;(2)z是纯虚数;(3)z对应的点位于复平面第二象限;(4)z对应的点在直线x+y+3=0上.
(本小题满分12分)已知函数的部分图象如图所示.(Ⅰ) 求函数的解析式;(Ⅱ) 如何由函数的图象通过适当的变换得到函数的图象, 写出变换过程.
(本小题满分15分)求函数的最大和最小值.
(本小题15分)已知,是实数,方程有两个实根,,数列满足,,(Ⅰ)求数列的通项公式(用,表示);(Ⅱ)若,,求的前项和.
(本小题满分14分)设直线(其中,为整数)与椭圆交于不同两点,,与双曲线交于不同两点,,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
在非负数构成的数表中每行的数互不相同,前6列中每列的三数之和为1,,,,,,,均大于.如果的前三列构成的数表满足下面的性质:对于数表中的任意一列(,2,…,9)均存在某个使得⑶.求证:(ⅰ)最小值,,2,3一定自数表的不同列.(ⅱ)存在数表中唯一的一列,,2,3使得数表仍然具有性质.