甲、乙两人进行投篮比赛,两人各投3球,谁投进的球数多谁获胜,已知每次投篮甲投进的概率为,乙投进的概率为,求:(1)甲投进2球且乙投进1球的概率;(2)在甲第一次投篮未投进的条件下,甲最终获胜的概率.
设是上的偶函数,求的值.
设对有意义,,且成立的充要条件是. (1)求与的值; (2)当时,求的取值范围.
设函数是二次函数,已知,且有两个相等实根.问是否存在一个常数,使得直线将函数的图象与坐标轴所围成的图形分成面积相等的两部分,若不存在,请说明理由;若存在,则求出此常数.
极限表示为定积分.
一质点在直线上从时刻开始从速度运动.求: (1)在时刻时,该点的位置; (2)在时刻时,该点运动的路程.