(本小题满分14分)设,为直角坐标平面内轴正方向上的单位向量,若向量,,且.(1)求点的轨迹的方程;(2)过点(0,3)作直线与曲线交于两点,设,是否存在这样的直线,使得四边形是矩形?若存在,求出直线的方程;若不存在,试说明理由.
(本题6分)设全集为R,,,求及
在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2) (Ⅰ)求证:A1E⊥平面BEP; (Ⅱ)求二面角A1-BP-E的大小。
如图,A1A是圆柱的母线,AB是圆柱底面圆的直径, C是底面圆周上异于A,B的任意一点,A1A= AB=2. (Ⅰ)求证: BC⊥平面A1AC; (Ⅱ)求三棱锥A1-ABC的体积的最大值.
如图,在四棱锥中,底面为直角梯形,,,底面,且,分别为、的中点。 (Ⅰ)求证:; (Ⅱ)求与平面所成角的正弦值。
如图,在直三棱柱中,分别是的中点,点在上, 求证:(Ⅰ)∥平面 (Ⅱ)平面平面