一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列.
已知函数(其中,无理数).当时,函数有极大值.(1)求实数的值;(2)求函数的单调区间;(3)任取,,证明:.
已知椭圆C的中心在原点,焦点y在轴上,焦距为,且过点M. (1)求椭圆C的方程;(2)若过点的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由.
设数列{an}前n项和为Sn,点均在直线上.(1)求数列{an}的通项公式;(2)设,Tn是数列{bn}的前n项和,试求Tn;(3)设cn=anbn,Rn是数列{cn}的前n项和,试求Rn.
某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示. 但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?
设命题实数满足,其中. 命题实数满足.(1)若,且为真,求实数的取值范围;(2)若是成立的必要不充分条件,求实数的取值范围.