某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射。
如图所示,坐标系xoy位于竖直平面内,在该区域内有场强E=12N/C、方向沿x轴正方向的匀强电场和磁感应强度大小为B =2T,沿水平方向且垂直于xoy平面指向纸里的匀强磁场.一个质量m=410-5kg,电量q ="2.5" 1-5C带正电的微粒,在xoy平面内做匀速直线运动,运动到原点o时,撤去磁场,经一段时间后,带电微粒运动到了x轴上的P点.取g=10 m/s2,求: (1)P点到原点0的距离; (2)带电微粒由原点0运动到P点的时间.
如图,质量为2m的物体A与水平面的动摩擦可忽略不计,质量为m的物体B与地面的动摩擦因数为,在水平向右推力F的作用下,A、B一起向右做匀加速运动,求: (1)A的加速度为多少?(2)A对B的作用力为多少?
质量为M的圆环用细线(质量不计)悬挂着,将两个质量均为m的有孔小珠套在此环上且可以在环上做无摩擦的滑动,如图所示,今同时将两个小珠从环的顶部释放,并沿相反方向自由滑下,试求: (1)在圆环不动的条件下,悬线中的张力T随cosθ(θ为小珠和大环圆心连线与竖直方向的夹角)变化的函数关系,并求出张力T的极小值及相应的cosθ值; (2)小球与圆环的质量比至少为多大时圆环才有可能上升?
如图所示,质量均为m的物块A和B用弹簧连结起来,将它们悬于空中静止,弹簧处于原长状态,A距地面高度H=0.90m,同时释放两物块,A与地面碰撞后速度立即变为零,由于B的反弹,A刚好能离开地面。若B物块换为质量为2m的物块C(图中未画出),仍将它们悬于空中静止且弹簧为原长,从A距地面高度为H’处同时释放,设A也刚好能离开地面。已知弹簧的弹性势能EP与弹簧的劲度系数k和形变量x的关系是:EP=kx2。试求:(1)B反弹后,弹簧的最大伸长量。(2)H’的大小
如图所示,光滑水平面上放置质量均为M=2kg的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过感应开关时,两车自动分离),甲车上表面光滑,乙车上表面与滑块P之间的动摩擦因数μ=0.5.一根通过细线拴着且被压缩的轻质弹簧固定在甲车的左端,质量为m=1kg的滑块P(可视为质点)与弹簧的右端接触但不相连,此时弹簧的弹性势能E0=10J,弹簧原长小于甲车长度,整个系统处于静止状态.现剪断细线,求: ⑴滑块P滑上乙车前的瞬时速度的大小; ⑵滑块P滑上乙车后最终未滑离乙车,滑块P在乙车上滑行的距离.(取g=10m/s2)