如图所示,光滑的曲面轨道的水平出口跟停在光滑水平面上的平板小车的上表面相平,质量为m的小滑块从光滑轨道上某处由静止开始滑下并滑下平板小车,使得小车在光滑水平面上滑动.已知小滑块从光滑轨道上高度为H的位置由静止开始滑下,最终停到板面上的Q点.若平板小车的质量为3m.用g表示本地的重力加速度大小,求:(1)小滑块到达轨道底端时的速度大小v0;(2)小滑块滑上小车后,平板小车可达到的最大速度V;(3)该过程系统产生的总热量Q.
人造地球卫星绕地球旋转时,既具有动能又具有引力势能(引力势能实际上是卫星与地球共有的,简略地说此势能是人造卫星所具有的).设地球的质量为M,以卫星离地还需无限远处时的引力势能为零,则质量为m的人造卫星在距离地心为r处时的引力势能为EP=-GMm/r(G为万有引力常量). 当物体在地球表面的速度等于或大于某一速度时,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造卫星,这个速度叫做第二宇宙速度.用R表示地球的半径,M表示地球的质量,G表示万有引力常量.试写出第二宇宙速度的表达式.
如图所示,质量为M=4kg的木板放置在光滑的水平面上,其左端放置着一质量为m=2kg的滑块(视作质点),某时刻起同时给二者施以反向的力,如图,F1=6N,F2=3N,适时撤去两力,使得最终滑块刚好可到达木板右端,且二者同时停止运动,已知力F2在t2=2s时撤去,板长为S=4.5m,g=10m/s2,求 (1) 力F1的作用时间t1 (2) 二者之间的动磨擦因数μ (3) t2=2s时滑块m的速度大小
如图所示,在倾角为θ的光滑斜面上,有一长为l的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O点到斜面底边的距离soc=L,求:(1)小球通过最高点A时的速度vA.(2)小球通过最低点B时,细线对小球的拉力.(3)小球运动到A点或B点时细线断裂,小球滑落到斜面底边时到C点的距离若相等,则l和L应满足什么关系?
过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m。一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m。小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度g=10m/s2,计算结果保留小数点后一位数字。试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点A的距离。
倾斜雪道的长为25 m,顶端高为15 m,θ=370,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图所示。一滑雪运动员在倾斜雪道的顶端以水平速度v0=8 m/s飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起。除缓冲外运动员可视为质点,过渡轨道光滑,其长度可忽略。设滑雪板与雪道的动摩擦因数μ=0.2,求运动员在水平雪道上滑行的距离(取g=10 m/s2)