已知空间四边形ABCD中,AB =" BC" ="CD=" AD =" BD" = AC, E、F分别为AB、CD的中点,(1)求证:EF为AB和CD的公垂线(2)求异面直线AB和CD的距离
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)设个不全相等的正数依次围成一个圆圈。(Ⅰ)若,且是公差为的等差数列,而是公比为的等比数列;数列的前项和满足:,求通项;(Ⅱ)若每个数是其左右相邻两数平方的等比中项,求证:。
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)已知以原点为中心的椭圆的一条准线方程为,离心率,是椭圆上的动点。(Ⅰ)若的坐标分别是,求的最大值;(Ⅱ)如题(20)图,点的坐标为,是圆上的点,是点在轴上的射影,点满足条件:,,求线段的中点的轨迹方程。
(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)如题(19)图,在四棱锥中,且;平面平面,;为的中点,。求:(Ⅰ)点到平面的距离;(Ⅱ)二面角的大小。
在直角坐标系中,△OAB的顶点坐标O(0 , 0),A(2, 0),B(1, ),求△OAB在矩阵MN的作用下变换所得到的图形的面积,其中矩阵,
如图,四边形ABCD内接于,,过A点的切线交CB的延长线于E点.求证:.