(本小题满分14分)已知数列的前项和为,若且.(Ⅰ)求证是等差数列,并求出的表达式;(Ⅱ)若,求证.
平面上有三个点A(-2,y),B,C(x,y),若⊥,则动点C的轨迹方程为__________.
函数f(x)=x3-x2+ax-5在区间[-1,2]上不单调,则实数a的取值范围是________.
已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=-4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]上单调递增;④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.以上命题中所有正确命题的序号为________.
函数y=f(x)为定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称,x,y满足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,的取值范围为________.
方程x2+(2m-1)x+4-2m=0的一根大于2,一根小于2,那么实数m的取值范围是__________.