电磁炮是利用磁场对电流的作用力,把电能转变成机械能,使炮弹发射出去的.如图所示,把两根互相平行的长直铜制轨道放在磁场中,轨道之间搁有长为l、质量为M的金属架,金属架上安放质量为m的炮弹.当有电流I1通过轨道和金属架时,炮弹与金属架整个在磁场力的作用下,获得速度v1时刻的加速度为a;当有大的电流I2通过轨道和炮弹时,炮弹最终以最大速度v2脱离金属架并离开轨道,则垂直于轨道平面的磁感应强度B为多大?(设金属架与炮弹在运动过程中所受的总阻力与速度的平方成正比)
在大风的情况下,一小球自A点竖直向上抛出,其运动的轨迹如图11所示(小球的运动可看作竖直方向的竖直上抛运动和水平方向的初速为零的匀加速直线运动的合运动)。小球运动的轨迹上A、B两点在同一水平线上,M点为轨迹的最高点。若风力的大小恒定、方向水平向右,小球抛出时的动能为4J,在M点时它的动能为2J,不计其他的阻力。求:(1)小球的水平位移S1与S2的比值。(2)小球所受风力F与重力G的比值。(结果可用根式表示)(3)小球落回到B点时的动能EKB-
人造地球卫星绕地球旋转时,既具有动能又具有引力势能(引力势能实际上是卫星与地球共有的,简略地说此势能是人造卫星所具有的).设地球的质量为M,以卫星离地还需无限远处时的引力势能为零,则质量为m的人造卫星在距离地心为r处时的引力势能为EP=-GMm/r(G为万有引力常量). 当物体在地球表面的速度等于或大于某一速度时,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造卫星,这个速度叫做第二宇宙速度.用R表示地球的半径,M表示地球的质量,G表示万有引力常量.试写出第二宇宙速度的表达式.
如图所示,质量为M=4kg的木板放置在光滑的水平面上,其左端放置着一质量为m=2kg的滑块(视作质点),某时刻起同时给二者施以反向的力,如图,F1=6N,F2=3N,适时撤去两力,使得最终滑块刚好可到达木板右端,且二者同时停止运动,已知力F2在t2=2s时撤去,板长为S=4.5m,g=10m/s2,求 (1) 力F1的作用时间t1 (2) 二者之间的动磨擦因数μ (3) t2=2s时滑块m的速度大小
如图所示,在倾角为θ的光滑斜面上,有一长为l的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O点到斜面底边的距离soc=L,求:(1)小球通过最高点A时的速度vA.(2)小球通过最低点B时,细线对小球的拉力.(3)小球运动到A点或B点时细线断裂,小球滑落到斜面底边时到C点的距离若相等,则l和L应满足什么关系?
过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m。一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m。小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度g=10m/s2,计算结果保留小数点后一位数字。试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点A的距离。