已知h>0,设命题甲为:两个实数a、b满足,命题乙为:两个实数a、b满足且,那么
如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为和,过A、B分别作两平面交线的垂线,垂足为A′、B′,则AB∶A′B′= (A)2∶1(B)3∶1(C)3∶2(D)4∶3
过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为 (A) (B) (C) (D)
给出下列四个命题: ①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行. ③若直线与同一平面所成的角相等,则互相平行. ④若直线是异面直线,则与都相交的两条直线是异面直线. 其中假命题的个数是
两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有
过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°则该截面的面积是