(本小题满分14分)如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面;(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
选修4—4 坐标系与参数方程已知两点、的极坐标分别为,.(Ⅰ)求、两点间的距离;(Ⅱ)以极坐标系的极点为直角坐标系的原点,极轴为轴的非负半轴,建立平面直角坐标系,求直线的参数方程.
选修4—1 几何证明选讲已知△内接于⊙,为⊙的切线,为直线上一点,过点作的平行线交直线于点,交直线于点.(Ⅰ)如图甲,求证:当点在线段上时,;(Ⅱ)如图乙,当点在线段的延长线上时,(Ⅰ)的结论是否仍成立?如果成立,请给予证明;如果不成立,请说明理由.
设函数.(Ⅰ)若函数在定义域上是单调函数,求的取值范围;(Ⅱ)若,证明对于任意的,不等式.
如图在中,三个顶点坐标分别为,,,曲线过点且曲线上任一点满足是定值.(Ⅰ)求出曲线的标准方程;(Ⅱ)设曲线与轴,轴的交点分别为、,是否存在斜率为的直线过定点与曲线交于不同的两点、,且向量与共线.若存在,求出此直线方程;若不存在,请说明理由.
如图,四棱锥中,底面为矩形,底面,且,,点是中点.(Ⅰ)若为中点,证明://平面;(Ⅱ)若是边上任一点,证明:;(Ⅲ)若,求直线与平面所成角的正弦值.