(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°. (1) 求异面直线AF与BG所成的角的大小; (2) 求平面APB与平面CPD所成的锐二面角的大小.
如图,已知抛物线的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过F,则该双曲线的离心率为()
若函数,又,且的最小值为,则正数的值是()
如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,且直角边长为1,那么这个几何体的体积为()
右面程序框图表示的算法的运行结果是()
已知是非零向量且满足,,则与的夹角是()