江苏省兴化市九年级中考网上阅卷适应性训练(二模)数学试卷
如图是一个正方体的表面展开图,则原正方体中与“祝”字所在的面相对的面上标的字是( )
A.考 | B.试 | C.顺 | D.利 |
由于今年多次“雾霾中国”,国人对空气质量日益关注.某市2014年4月份一周空气质量报告中某种污染指数的数据是:32,36,32,35,30,32,31,这组数据的中位数和众数分别是( )
A.32,31 | B.33,32 | C.32,32 | D.32,35 |
兴化市教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款30000元,已知“…”,设乙学校教师有x人,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补( )
A.乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20% |
B.甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20% |
C.甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20% |
D.乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20% |
反比例函数y=和正比例函数y=mx的图象如图所示.由此可以得到方程=mx的实数根为( )
A.x=-2 | B.x=1 | C.x1=2,x2=-2 | D.x1=1,x2=-2 |
如图,数轴上M、N两点表示的数分别为和5.2,则M、N两点之间表示整数的点共有 个.
如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C= .
如图,在△ABC中,AB=AC, ∠A=40º,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则∠EBC的度数为 .
在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,8),A4(4,15),…,用你发现的规律确定点An的坐标为 .
如图,在△ABC中,AB=,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是 .
4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:
初中生课外阅读情况调查统计表
种类 |
频数 |
频率 |
卡通画 |
a |
0.45 |
时文杂志 |
b |
0.16 |
武侠小说 |
50 |
c |
文学名著 |
d |
e |
(1)这次随机调查了 名学生,统计表中d= ;
(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是 ;
(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成37°夹角,且CB=4米.
(1)求钢缆CD的长度;
(2)若AD=2.1米,灯的顶端E距离A处1.8米,且∠EAB=120°,则灯的顶端E距离地面多少米? (参考数据:sing37°≈0.60,cos37°≈0.80,tan37°≈0.75)
如图所示的转盘,分成三个相同的扇形,3个扇形分别标有数字1、2、-3,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,重新转动转盘).
(1)写出此情景下一个不可能发生的事件;
(2)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数和为正数”发生的概率.
在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-2,4),(2,1).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△A′B′C′;
(3)若△ADE是△ABC关于点A的位似图形,且E的坐标为(6,-2),则点D的坐标为 , 四边形BCED面积是 .
如图,AB为⊙O的弦,OC⊥OA,交AB于点P,且PC=BC.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若tan∠A=,BC=8,求⊙O的半径.
如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系.已知该材料在加热前的温度为4℃,加热一段时间使材料温度达到28℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系,已知当第12分钟时, 材料温度是14℃.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);
(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?
如图,矩形ABCD中,点E、F分别从A、D两点同时出发,以相同的速度作直线运动.点E在线段AB上运动,点F沿射线CD运动,连结EF、AF、AC,EF分别交AD和AC 于点O、H.
(1)求证:EO=OF;
(2)当点E运动到什么位置时,EF=AC,在备用图1中画出图形并说明理由;
(3)当点E运动到什么位置时,∠FAD=∠CAD,在备用图2中画出图形并说明理由,此时设四边形CDOH的面积为S,四边形ABCF的面积为S,请直接写出S:S的值.