浙江省温州市十校联合体第一学期高三期初联考理科数学试卷
设全集则右图中阴影部分表示的集合( ▲ )
A. | B. | C.{x|x>0} | D. |
右边是一个算法的程序框图,当输入的x值为3时,输出y的结果恰好是,则?处的关系是( ▲ )
A. | B. | C. | D. |
从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为偶数的概率是( ▲ )
A. | B. | C. | D. |
若的三个内角A、B、C满足,则( ▲ )
A.一定是锐角三角形 B.一定是直角三角形
C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形
已知O是坐标原点,点,若点为平面区域
上的一个动点 ,则的最大值是( ▲ )
A.-1 | B. | C.0 | D.1 |
已知函数是偶函数,
内单调递减,则实数m="(" ▲ )
A.2 | B. | C. | D.0 |
设函数的定义域为,如果对于任意的,存在唯一的,使得 成立(其中为常数),则称函数在上的均值为, 现在
给出下列4个函数: ① ② ③ ④ ,则在其定义域上的均值为 2的所有函数是下面的 ( ▲ )
A.①② | B. ③④ | C.①③④ | D.①③ |
已知函数,则关于的方程,有
5个不同实数解的充要条件是( ▲ )
A.且 | B.且 | C.且 | D.且 |
某大厦的一部电梯从底层出发后只能在第6,7,8层停靠,若该电梯在底层有5个乘客,且每位乘客在这三层的每一层下电梯的概率为,用表示5位乘客在第8层下
电梯的人数,则随机变量的期望 ___▲___.
如下图,函数,x∈R,(其中0≤≤)的图像与y轴交于点(0,1).
设P是图像上的最高点,M、N是图像与x轴的交点,则与的夹角的余弦值为 ▲ .
给出下列命题:
①是幂函数
②函数的零点有1个
③的解集为
④“<1”是“<2”的充分不必要条件
⑤函数在点O(0,0)处切线是轴
其中真命题的序号是 ▲ (写出所有正确命题的编号)
定义在上的函数满足
(1)对都有;
(2)对都有.
若,,
,则、、的大小关系为______▲_____(用“”连接)
在ABC中,内角A,B,C的对边分别为a,b,c.
已知.
(1)求的值;
(2)若cosB=,b=2,的面积S。
某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为,科目B每次考试成绩合格的概率均为.假设各次考试成绩合格与否均互不影响.
(Ⅰ)求他不需要补考就可获得证书的概率;
(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为,求的数学期望E.