[贵州]2012年初中毕业升学考试(贵州贵阳卷)数学
在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将110000元用科学记数法表示为【 】
A.1.1×103元 | B.1.1×104元 | C.1.1×105元 | D.1.1×106元 |
下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是【 】
A.圆锥 | B.圆柱 | C.三棱柱 | D.球 |
如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是【 】
A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF
一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.
每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是【 】
A.6 | B.10 | C.18 | D.20 |
如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是【 】
A. | B. | C. | D. |
如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是【 】
A.3 | B.2 | C. | D.1 |
为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如下表所示,学校应选择【 】
|
学生平均身高(单位:m) |
标准差 |
九(1)班 |
1.57 |
0.3 |
九(2)班 |
1.57 |
0.7 |
九(3)班 |
1.6 |
0.3 |
九(4)班 |
1.6 |
0.7 |
A.九(1)班 B.九(2)班 C.九(3)班 D.九(4)班
已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当﹣5≤x≤0时,下列说法正确的是【 】
A.有最小值﹣5、最大值0 | B.有最小值﹣3、最大值6 |
C.有最小值0、最大值6 | D.有最小值2、最大值6 |
张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是 .
如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠An的度数为 ▲ .
为了全面提升中小学教师的综合素质,贵阳市将对教师的专业知识每三年进行一次考核.某校决定为全校数学教师每人购买一本义务教育《数学课程标准(2011年版)》(以下简称《标准》),同时每人配套购买一本《数学课程标准(2011年版)解读》(以下简称《解读》),其中《解读》的单价比《标准》的单价多25元.若学校购买《标准》用了378元,购买《解读》用了1053元,请问《标准》和《解读》的单价各是多少元?
林城市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了 名学生;
(2)请将条形统计图补充完整;
(3)如果全市有16万名初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?
小亮想知道亚洲最大的瀑布黄果树夏季洪峰汇成巨瀑时的落差.如图,他利用测角仪站在C处测得∠ACB=68°,再沿BC方向走80m到达D处,测得∠ADC=34°,求落差AB.(测角仪高度忽略不计,结果精确到1m)
在一个不透明的口袋里有分别标注2、4、6的3个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个小球,再从这3张背面朝上的卡片中任意摸出一张卡片.
(1)请你用列表或画树状图的方法,表示出所有可能出现的结果;
(2)小红和小莉做游戏,制定了两个游戏规则:
规则1:若两次摸出的数字,至少有一次是“6”,小红赢;否则,小莉赢.
规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢.
小红要想在游戏中获胜,她会选择哪一种规则,并说明理由.
如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在BC和CD上.
(1)求证:CE=CF;
(2)若等边三角形AEF的边长为2,求正方形ABCD的周长.
已知一次函数y=x+2的图象分别与坐标轴相交于A、B两点(如图所示),与反比例函数(x>0)的图象相交于C点.
(1)写出A、B两点的坐标;
(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数(x>0)的关系式.
如图,在⊙O中,直径AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,则
(1)BD的长是 ;
(2)求阴影部分的面积.
如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.
(1)三角形有 条面积等分线,平行四边形有 条面积等分线;
(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线;
(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.