[北京]2012届北京石景山区中考模拟数学卷
如图1所示,⊙O的两条切线PA和PB相交于点P,与⊙O相切于A、B两点,C是⊙O上的一点,若∠P=700,则∠ACB= 。
为了了解学生使用零花钱的情况,小军随机的抽查了他们班的30名学生,结果如下表:
每天使用零花钱(单位:元) |
2 |
4 |
6 |
10 |
12 |
人数 |
4 |
10 |
8 |
6 |
2 |
这些同学每天使用零花钱的众数是 ,中位数是 。
如图2,四边形ABCD是平行四边形,E是CD延长线上的任意一点,连接BE交AD于点O,如果△ABO≌△DEO,则需要添加的条件是 。(只需一个即可,图中不能添加任何点或线)
如图3,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是 mm.
某同学手里拿着长为3和2的两个木棍,想要装一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是 ( )
A.1,3,5 | B.1,2,3 | C.2,3,4 | D.3,4,5 |
将y=2x2的函数图象向左平移2个单位长度后,得到的函数解析式是( )
A.y=2x2+2 | B.y=2(x+2)2 | C.y=(x-2)2 | D.y=2x2-2 |
将y=2x2的函数图象向左平移2个单位长度后,得到的函数解析式是( )
A.y=2x2+2 | B.y=2(x+2)2 | C.y=(x-2)2 | D.y=2x2-2 |
学校在艺术周上,要求学生制作一个精美的轴对称图形,请你用所给出的几何图形:○○△△ (两个圆,两个等边三角形,两条线段)为构件,构思一个独特,有意义的轴对称图形,并写上一句简要的解说词。
某学校九年级的学生去旅游,在风景区看到一棵古松,不知这棵古松有多高,下面是他们的一段对话:
甲:我站在此处看树顶仰角为45°。
乙:我站在此处看树顶仰角为30°。
甲:我们的身高都是1.5m。
乙:我们相距20m。
请你根据两位同学的对话,参考图7计算这棵古松的高度。(参考数据≈1.414,≈1.732,结果保留两位小数)。
已知:如图8,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
求证:∠BAC=∠CAD
若∠B=30°,AB=12,求的长.
学校为了响应国家阳光体育活动,选派部分学生参加足球、乒乓球、篮球、排球队集训.根据参加项目制成如下两幅不完整的统计图(如图9和如图10,要求每位同学只能选择一种自己喜欢的球类,图中用足球、乒乓球、篮球、排球代表喜欢这四种球类某种球类的学生人数)
请你根据图中提供的信息解答下列问题:
参加篮球对的有 人,参加足球对的人数占全部参加人数的 %.
喜欢排球队的人数在扇形统计图中所占的圆心角是多少度?并补全频数分布折线统计图.
若足球对只剩一个集训名额,学生小明和小虎都想参加足球队,决定采用随机摸球的方式确定参加权,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,小明随机地从四个小球中摸出一球然后放回,小虎再随机地摸出一球,若小明摸出的小球标有数字比小虎摸出的小球标有的数字大,则小明参加,否则小虎参加,试分析这种规则对双方是否公平?
认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.
探究如图11-1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线
如图11-2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
如图11-3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)
结论: .