[广东]2012届广东省韶关市高三第一次调研考试文科数学
三棱柱的直观图和三视图(主视图和俯视图是正方形,左视图是等腰直角三角形)如图所示, 则这个三棱柱的全面积等于
A. | B. |
C. | D. |
对于,有如下四个命题:
①若 ,则为等腰三角形,
②若,则是直角三角形
③若,则是钝角三角形
④若, 则是等边三角形
其中正确的命题个数是
A. | B. | C. | D. |
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果分成五组:每一组;第二组,…,第五组.右图是按上述分组方法得到的频率分布直方图,若成绩大于或等于14秒且小于16秒认为良好,则该班在这次百米测试中成绩良好的人数等于__________人.
对于函数,在使成立的所有常数中,我们把的最大值称为的"下确界",则函数的"下确界"等于_________.
(坐标系与参数方程选做题)
在直角坐标系中, 以坐标原点为极点, 轴正半轴为极轴建立极坐标系,则直线和截圆的弦长等于_______________.4
(几何证明选讲选做题)
已知圆的半径为,从圆外一点引切线和割线,圆心到的距离为,,则切线的长为 ____________.
(本题满分12分)已知函数.
(1)求的周期和单调递增区间;
(2)说明的图象可由的图象经过怎样变化得到.
(本题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合计 |
30 |
20 |
50 |
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出,你有多大的把握认为是否喜欢打蓝球与性别有关?
下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(本题满分14分)如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.
(1)求证:;
(2)若四边形ABCD是正方形,求证;
(3)在(2)的条件下,求四棱锥的体积.
(本题满分14分)已知函数,且数列是首项为,公差为2的等差数列.
(1)求证:数列是等比数列;
(2)设,求数列的前项和的最小值..
(本题满分14分)设抛物线的方程为,为直线上任意一点,过点作抛物线的两条切线,切点分别为,.
(1)当的坐标为时,求过三点的圆的方程,并判断直线与此圆的位置关系;
(2)求证:直线恒过定点.