2016年江苏省常州市中考数学试卷
如图,把直角三角板的直角顶点 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点 、 ,量得 , ,则该圆玻璃镜的半径是
A. B. C. D.
已知一次函数 和二次函数 的自变量和对应函数值如表:
|
|
|
0 |
2 |
4 |
|
|
|
0 |
1 |
3 |
5 |
|
|
|
|
1 |
3 |
4 |
|
|
|
0 |
|
0 |
5 |
|
当 时,自变量 的取值范围是
A. B. C. D. 或
为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.
根据统计图所提供的信息,解答下列问题:
(1)本次共调查了 名市民;
(2)补全条形统计图;
(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.
一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同
(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;
(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.
某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.
(1)求甲、乙两种糖果的价格;
(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?
如图,在平面直角坐标系 中,一次函数 的图象与 轴、 轴分别交于点 、 ,把 绕点 顺时针旋转角 ,得到△ .
(1)当 时,判断点 是否在直线 上,并说明理由;
(2)连接 ,设 与 交于点 ,当 为何值时,四边形 是平行四边形?请说明理由.
(1)阅读材料:
教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为 ,故沿虚线 剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.
(2)类比解决:
如图2,已知边长为2的正三角形纸板 ,沿中位线 剪掉 ,请把纸板剩下的部分 剪开,使剪成的若干块能够拼成一个新的正三角形.
①拼成的正三角形边长为 ;
②在图2中用虚线画出一种剪拼示意图.
(3)灵活运用:
如图3,把一边长为 的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中 ,延长 、 分别与 、 交于点 、 ,点 、 分别为 、 的中点,在线段 和 处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)
如图,在平面直角坐标系 中,一次函数 与二次函数 的图象相交于 、 两点,点 ,点 为抛物线的顶点.
(1)求二次函数的表达式;
(2)长度为 的线段 在线段 (不包括端点)上滑动,分别过点 、 作 轴的垂线交抛物线于点 、 ,求四边形 面积的最大值;
(3)直线 上是否存在点 ,使得点 关于直线 的对称点 满足 ?若存在,求出点 的坐标;若不存在,请说明理由.