高考原创文科数学预测卷 04(新课标2卷)
在某校中学生朗读比赛现场上,八位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的中位数与平均数分别为( )
A.93和91.6 | B.91.5和91.6 |
C.93和92.4 | D.91.5和92.4 |
设和分别是和的导函数,若在区间上恒成立,则称和在区间上单调性相反,若函数与在开区间上单调性相反,则的最大值为( )
A. | B.1 | C. | D.2 |
已知椭圆M的中心在原点O,分别是其长轴与短轴的端点,点B是椭圆M上一点,且在第一象限,点B关于原点的对称点为D,在四边形ABCD面积最大值为 .
(本小题满分12分)设数列{an}的前n项和为Sn,且满足.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足求 .
(本小题满分12分)如图,在斜三棱柱中,侧面与侧面都是菱形,,.
(Ⅰ)求证:;
(Ⅱ)若,求三棱锥的体积.
(本小题满分12分)某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:
7 |
7 |
7.5 |
9 |
9.5 |
|
6 |
8.5 |
8.5 |
由于表格被污损,数据看不清,统计员只记得,且两种元件的检测数据的平均值相等,方差也相等.
(1)求表格中与的值;
(2)若从被检测的5件B种元件中任取2件,求2件都为正品的概率.
(本小题满分12分)已知圆,若椭圆
的右顶点为圆的圆心,离心率为.
(1)求椭圆的方程;
(2)若存在直线l:y=kx,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆M的半径r的取值范围.
(本小题满分12分)己知函数,其中
(1)求函数的单调区间;
(2)若直线是曲线y=的切线,求实数的值;
(3)设,求 在区间上的最大值(其中e为自然对数的底数)
(本小题满分10分)选修4-1:几何证明选讲
如图,AB是圆O的一条切线,切点为B,直线ADE,CFD,CGE,都是圆O的割线,已知AC=AB..
(1)求证:;
(2)若求的值.
(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与曲线的直角坐标方程;
(2)试判断曲线与是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.