如图所示是我市部分中小学投入使用的新型安全校车,这种校车的性能完全符合校车12项安全标准。中考期间,××中学的学生乘坐这种新型安全校车到9km外的考点参加考试,校车行驶了15min后安全到达考点.求:
(1)校车在送考过程中的平均速度;
(2)若校车和学生总质量为9000kg,车轮与地面的接触总面积为0.15m2,求校车对水平路面的压强;
(3)若校车以12m/s的速度在一段平直路面是匀速行驶,校车受到的牵引力是4500N,求校车发动机牵引力的功率。
如图所示,工人通过滑轮组使重600N的箱子以0.4m/s 的速度从地面提升到12m高的平台上,若工人吊起箱子过程中做的额外功是1800J.求:
(1)滑轮组的机械效率是多大?
(2)工人吊起箱子的过程中所用的拉力是多少?
(3)工人做功的功率为多少?
小明利用如图所示的滑轮组提起重为900N的物体,绳子自由端拉力F为400N,重物在拉力作用下匀速升高了10m,绳子自由端移动的速度为0.3m/s。(不计绳重和摩擦)
求:(1) 小明所用的时间;
(2) 提起重物所做的有用功和滑轮组的机械效率;
(3) 若用该滑轮组将重为1200N的物体B匀速提高,此时的机械效率是多少?
某校科技小组的同学设计了一个从水中打捞物体的模型,如图所示。其中D、E、G、H都是定滑轮,M是动滑轮,杠杆BC可绕O点在竖直平面内转动,OC∶OB=3∶4。杠杆BC和细绳的质量均忽略不计。人站在地面上通过拉绳子提升水中的物体A,容器的底面积为300 cm2。人的质量是70 kg,通过细绳施加竖直向下的拉力F1时,地面对他的支持力是N1,A以0.6m/s的速度匀速上升。当杠杆到达水平位置时物体A总体积的五分之二露出液面,液面下降了50cm,此时拉力F1的功率为P1;人通过细绳施加竖直向下的拉力F2时,物体A以0.6m/s的速度匀速上升。当物体A完全离开液面时,地面对人的支持力是N2,拉力F2的功率为P2。已知A的质量为75kg, N1∶N2=2∶1,忽略细绳与滑轮的摩擦以及水对物体的阻力,g取10N/kg。求:
⑴当物体露出液面为总体积的五分之二时,物体所受的浮力;
⑵动滑轮M受到的重力G;
⑶P1∶P2的值。
图甲是某科技小组设计的滑轮组模型装置。在底面积为800cm2的圆柱形容器中装有密度为的液体,边长为20 cm的正立方体物块M完全浸没在液体中匀速竖直上升时,滑轮组的机械效率为;密度为的物块M全部露出液面后匀速竖直上升时,滑轮组的机械效率为,与之比为8:9。滑轮的质量、且,细绳的质量、滑轮与轴之间的摩擦、液体对物块M的阻力均忽略不计,液体与物块M的质量与体积关系的图像如图乙示。(g取10N/kg)(人的质量为60kg,与地面的接触面积为300cm2)
求: (1)物块M离开液面后,液体对容器底部的压强变化了多少?
(2) 物块M露出液面前人对地面的压强P;
(3) 离开液面后如果物块M以0.1m/s的速度匀速上升时,人所提供的拉力的功率。
工人用图所示装置,打捞深井中的边长为30cm的正方体石料,石料的密度为3´103kg/m3。装置的OC、DE、FG三根柱子固定在地面上,AB杆可绕O点转动,AO:OB=1:2,边长为L的正立方体配重M通过绳竖直拉着杆的B端。现用绳子系住石料并挂在滑轮的钩上,工人用力沿竖直方向向下拉绳,使石料以0.2m/s的速度从水中匀速提升。AB杆始终处于水平位置,绳子的质量、轮与轴间的摩擦均不计,g取10N/kg。求:
(1)如果石料在水中匀速上升时滑轮组的机械效率是η1,石料完全离开水面后滑轮组的机械效率是η2,且η1:η2=83:84,求石料在水中匀速上升过程中,工人拉绳的功率多大?
(2)若石料在水中匀速上升时,配重对地面的压强为6500帕,石料完全离开水面后,配重对地面的压强为4812.5帕;求配重M的密度。
如图是某同学设计的简易打捞装置结构示意图。AOB是以O点为转轴,长为4m的轻质横梁, AB呈水平状态,AO=1m。在横梁上方行走装置可以在轨道槽内自由移动,行走装置下方固定有提升电动机。提升电动机通过细绳和滑轮组提起重物。固定在水平地面上的配重T通过细绳与横梁A端相连,GT=3000N。当行走装置处于C位置时,开始打捞物体A。质量mA是100kg、体积V为0.04m3 物体A在水中匀速上升时,地面对配重T的支持力是N1,滑轮组的机械效率为75%;当物体A全部露出液面,滑轮组将物体A以v是0.1m/s的速度匀速竖直向上提升1m,此时电动机拉动细绳的功率为P,地面对配重T的支持力是N2;N1∶N2=5∶1,若行走装置和提升电动机及定滑轮的总质量m2是20kg,,忽略细绳与滑轮的摩擦以及水对物体的阻力,g取10N/kg。求
(1)动滑轮的重力G动
(2)电动机拉动细绳的功率P
(3)OC的距离
如图所示 支撑杠杆水平平衡的支架AOB随物体M在液体中能上下运动自动升降,物体M的密度为2.7×103kg/m3,轻质杠杆LOA∶LOB=2∶5。某同学质量为60kg,利用这个装置进行多次实验操作,并将实验数据记录于表格中(表格中F浮为物体所受的浮力、h为物块浸入液体的深度,P为液体对容器底部的压强),在各次操作过程中可认为杠杆始终保持水平。其中一次实验用力F1拉动绳自由端匀速竖直向下运动,该同学对地面的压强为独立站在地面时对地压强的一半,滑轮组的机械效率η=90%。已知,物体M浸没在液体中时,液体深度1.8m(绳的重力、滑轮与轴的摩擦及液体对物体的阻力不计。g=10N/kg)。
F浮/ N |
100 |
200 |
300 |
400 |
500 |
600 |
600 |
600 |
h/m |
0.1 |
0.2 |
0.3 |
0.4 |
0.5 |
0.6 |
0.7 |
0.8 |
P/ pa |
16725 |
16975 |
17225 |
17425 |
17725 |
18000 |
18000 |
18000 |
求:
(1)拉力F1的大小;
(2)液体的密度;
(3)物体M完全露出液体表面时,滑轮组的机械效率(百分号前面保留整数);
如图甲所示,B是一个固定支架,由立柱和两侧装有定滑轮的水平横梁组成,物体M在横梁上可左右移动,M的左端用钢绳跨过定滑轮与电动机相连,右端用钢绳跨过定滑轮与滑轮组相连,滑轮组下挂一实心物体A,其密度ρA=5×103kg/m3,体积VA=0.024m3。当电动机不工作时(可视电动机对钢绳无拉力作用),将物体A浸没在水中,物体A可以通过滑轮组拉着物体M向右匀速运动;当电动机用一个竖直向下的力F1拉钢绳时,物体A在水面下以速度υ1=0.1m/s匀速上升,滑轮组的机械效率为η1;当物体A完全露出水面后,电动机用力F2拉钢绳,物体A匀速上升,滑轮组的机械效率为η2。在以上过程中,电动机对钢绳的拉力的大小随物体A上升高度的关系如图乙所示,电动机以F1、F2拉钢绳时的功率始终为P。(不计钢绳的质量、滑轮与轴的摩擦、水对物体的阻力。取g =10N/kg)
求:
(1)滑轮组的机械效率η1:η2
(2)电动机的功率P
如图所示,是使用汽车打捞水下重物的示意图。汽车通过滑轮组打捞水下一个圆柱形重物,在整个打捞过程中,汽车以0.3m/s的速度向右水平匀速运动。重物在水面下被提升的过程共用时50s,汽车拉动绳子的功率P1为480W。重物开始露出水面到完全被打捞出水的过程共用时10s,此过程中汽车拉动绳子的功率逐渐变大,当重物完全被打捞出水后,汽车的功率P2比P1增加了120W,且滑轮组机械效率为80%。忽略水的阻力、绳重和滑轮的摩擦,g取10N/kg。求:
(1)重物浸没在水中所受浮力;
(2)打捞前重物上表面受到水的压力;
(3)被打捞重物的密度
如图所示,科技馆里甲、乙两位同学利用滑轮组把自己匀速提升至高处。如图甲所示,甲同学匀速提升自已时的拉力F1为120N,滑轮组提升甲同学的机械效率为η1;如图乙所示,乙同学利用另一套滑轮组匀速提升自已时的拉力F2为80N,滑轮组提升乙同学的机械效率为η2。已知η1:η2=10:9,甲同学匀速提升自己时对吊板的压力N1与乙同学匀速提升自己时对吊板的压力N2之比为19:23,甲、乙两位同学拉力的功率相等。不计绳重和滑轮轴摩擦。求:
(1)在匀速提升自己时,甲、乙两同学上升速度之比;
(2)甲、乙两位同学各自所受的的重力G甲和G乙。
用如图(1)所示的装置提升重物,水平横梁AB 固定在支架C顶端,OA: OB=4:1。横梁A端挂一底面积为S=0.1m2的配重M,横梁B端下挂着由质量相等的四个滑轮组成的滑轮组,用此滑轮组多次提升不同的物体,计算出滑轮组的机械效率,并记入下面的表格。
物重G/N |
60 |
80 |
100 |
180 |
机械效率η |
0.75 |
0.80 |
0.833 |
0. 90 |
现用滑轮组分别提升甲、乙两个物体:在水面以上提升密度为ρ甲=0.75kg/dm3的甲物体时,绳自由端的拉力为F1,F1做的功为W1,配重M对地面的压强变化量为ΔP1;在水面以下提升密度为ρ乙=5.6kg/dm3的乙物体时,绳自由端的拉力为F2,F2做的功为W2,配重M对地面的压强变化量ΔP2。
F1、F2所做的功随时间变化的关系如图(2)所示。已知:甲、乙两物体的体积关系为V甲=4V乙,提升甲、乙两物体时速度相同。(不计绳的质量、杠杆的质量、轮与轴的摩擦、水对物体的阻力。取g =10N/kg)求:
(1)配重M对地面的压强变化量的差ΔP2-ΔP1
(2)滑轮组提升浸没在水中的乙物体时的机械效率。(保留百分号前面一位小数)
如图所示,用带有水桶的滑轮组把水从蓄水池中提到h=7m高的阳台,空水桶B的质量为2kg,POQ为固定支架,轻质杠杆MN可绕固定支点O转动,OM:ON=5:1,A为正方体配重,底面积为10-2m2,用绳索与杠杆N端相连,并保持杠杆水平。小明用力F1可匀速提升一满桶水,用力F2可匀速提升半桶水,且F1-F2=150N,F1:F2=32:17,(不计定滑轮的质量、绳子的质量及轮与轴的摩擦,g=10N/kg)求:
(1)水桶的容积;
(2)提升半桶水时滑轮组的机械效率;
(3)若提升满桶水从水面到阳台用时70s,则小明做功的功率为多少?
(4)提升满桶水与半桶水时,配重A对水平地面的压强差为多少?
如图甲所示,正方体A边长0.2m,作为配重使用,杠杆OE:OF=2:3,某同学用这个装置和一个密闭容器D提取水中的圆柱体B, 圆柱体B的体积是密闭容器D的;旁边浮体C的体积是0.1m3,该同学站在浮体C上,总体积的浸入水中;该同学用力拉动滑轮组绕绳自由端,手拉绳的功率P和密闭容器D匀速被提升的距离关系如图24乙所示;密闭容器D上升速度0.05m/s保持不变,密闭容器D被提出水后,圆柱体B从密闭容器D中取出放在浮体C的上面,同时手松开绳子时,浮体C露出水面的体积减少总体积的;在提升全过程中,配重A始终没有离开地面。两个定滑轮总重10 N.(绳的重力,滑轮与轴的摩擦及水的阻力不计。g=10N/kg),求:
(1)圆柱体B的重力;
(2)密闭容器D离开水面时,滑轮组提升重物B的机械效率;(百分号前面保留整数);
(3)圆柱体B的密度;
(4)在提升全过程中配重A对地面的压强的最大变化量。
如图所示,质量为8t(含动滑轮等附属设备的质量)的一台起重机正将一箱箱设备吊装到施工台上,其中起重臂下的钢绳是绕在一个动滑轮上的.已知每箱设备重4000N,施工台距离地面的高度为3m,当起重机沿竖直方向匀速提升一箱设备时,动滑轮上每段钢绳的拉力是2500N.(忽略钢绳的重力和摩擦)
(1)求动滑轮的机械效率;
(2)起重机工作时汽车轮胎离开地面,若支架与地面接触的总面积为1.2m2,求此时起重机对地面的压强;
(3)如图所示起重臂OA长12m,与水平方向夹角为30°(如图所示),伸缩支撑臂为圆弧状,伸缩时对吊臂的支持力始终与吊臂垂直,作用点为B且OB=4m,求支撑臂给起重臂的支持力(忽略起重臂自重,直角三角形OAC中当=30°时,≈0.87);
(4)为了节省时间,加快施工进度,起重机同时将两箱设备以0.2m/s的速度.匀速提升到施工台.求这种情况下,动滑轮上钢绳自由端拉力的功率.