如图为氢氧燃料电池原理示意图,下列叙述不正确的是
A.a电极是负极 |
B.b电极上发生氧化反应 |
C.该电池工作时化学能转化为电能 |
D.该电池的总反应为2H2 + O2 =2H2O |
一种可充电锂-空气电池如图所示。当电池放电时,
与
在多孔碳材料电极处生成
。下列说法正确的是( )
A. | 放电时,多孔碳材料电极为负极 |
B. | 放电时,外电路电子由多孔碳材料电极流向锂电极 |
C. | 充电时,电解质溶液中 向多孔碳材料区迁移 |
D. | 充电时,电池总反应为 |
氢氧燃料电池是将H2和O2通入电池,穿过浸入20%—40%的KOH溶液的多孔碳电极,其电极反应式分别为:2H2+4OH--4e-= 4H2O和O2+2H2O+4e-= 4OH-,下列不正确的是
A.氢氧燃料电池属于环境友好电池 |
B.通O2的极是正极,通入H2的极是负极 |
C.工作一段时间后KOH溶液的溶质质量分数增大 |
D.工作时溶液中的OH-向负极作定向移动 |
下图是某空间站能量转化系统的局部示意图,其中燃料电池采用KOH为电解液,下列有关说法中不正确的是
A.该能量转化系统中的水也是可以循环的 |
B.燃料电池系统产生的能量实际上来自于水 |
C.水电解系统中的阳极反应:4OH-―4e-=2H2O+O2↑ |
D.燃料电池放电时的负极反应:H2-2e-+2OH-=2H2O |
下图为铅蓄电池的示意图。下列说法正确的是
A.放电时,N为负极,其电极反应式为:PbO2+SO42-+4H++2e-=PbSO4+2H2O |
B.放电时,c(H2SO4)不变,两极的质量增加 |
C.充电时,阳极反应式为:PbSO4+2e-= Pb+SO42- |
D.充电时,若N连电源正极,则该极生成PbO2 |
一种充电电池放电时的电极反应为H2+2OH--2e-=2H2O;NiO(OH)+H2O+e-=Ni(OH)2+OH-当为电池充电时,与外电源正极相连接的电极上发生的反应是( )
A.H2O的还原 | B.NiO(OH)的还原 |
C.H2的氧化 | D.Ni(OH)2的氧化 |
一种氢氧燃料电池用30%KOH溶液为电解质溶液,有关这种电池的说法中错误的是
A.H2在负极发生氧化反应 | B.供电时的总反应为:2H2 + O2 = 2H2O |
C.产物为无污染的水,属于环境友好电池 | D.负极反应为:H2 - 2e- = 2H+ |
一种燃料电池中发生的化学反应为:在酸性溶液中甲醇与氧作用生成水和二氧化碳。该电池负极发生的反应是
A.CH3OH(g)+O2(g)-2e- = H2O(l)+CO2(g)+2H+(aq) |
B.O2(g)+4H+(aq)+4e-=2H2O(l) |
C.CH3OH(g)+H2O(l)-6e- =CO2(g)+6H+(aq) |
D.O2(g)+2H2O(l)+4e- =4OH- |
全固态锂硫电池能量密度高、成本低,其工作原理如图所示,其中电极a常用掺有石墨烯的 材料,电池反应为: 。下列说法错误的是( )
A. |
电池工作时,正极可发生反应: |
B. |
电池工作时,外电路中流过 电子,负极材料减重 |
C. |
石墨烯的作用主要是提高电极a的导电性 |
D. |
电池充电时间越长,电池中 的量越多 |
为提升电池循环效率和稳定性,科学家近期利用三维多孔海绵状Zn(3D−Zn)可以高效沉积ZnO的特点,设计了采用强碱性电解质的3D−Zn-NiOOH二次电池,结构如下图所示。电池反应为
。下列说法错误的是( )
A. |
三维多孔海绵状Zn具有较高的表面积,所沉积的ZnO分散度高 |
B. |
充电时阳极反应为 |
C. |
放电时负极反应为 |
D. |
放电过程中 通过隔膜从负极区移向正极区 |
利用生物燃料电池原理研究室温下氨的合成,电池工作时
在电极与酶之间传递电子,示意图如下所示。下列说法错误的是( )
A.相比现有工业合成氨,该方法条件温和,同时还可提供电能
B.阴极区,在氢化酶作用下发生反应
C.正极区,固氮酶为催化剂, 发生还原反应生成
D.电池工作时质子通过交换膜由负极区向正极区移动
如图为某种甲醇燃料电池示意图,工作时电子移动方向如图所示,下列判断正确的是( )
A.X为氧气 |
B.电极A反应式:CH3OH-6e-+H2O=CO2+6H+ |
C.B电极附近溶液pH增大 |
D.电极材料活泼性:A>B |
已知蓄电池在充电时作电解池,放电时作原电池,铅蓄电池上的两个接线柱,一个接线柱旁标有“+”,另一个接线柱旁标有“—”,关于标有“+”的接线柱,下列说法中正确的是
A.充电时作阳极,放电时作负极 |
B.充电时作阳极,放电时作正极 |
C.充电时作阴极,放电时作负极 |
D.充电时作阴极,放电时放正极 |