如图,真空中平面直角坐标系上的三点构成等边三角形,边长m。若将电荷量均为的两点电荷分别固定在、两点,已知静电力常数,求:
(1)两个点电荷间的库仑力大小;
(2)点的电场强度的大小和方向。
利用电动机通过如图所示的电路提升重物,已知电源电动势E=6 V,电源内阻r=1 Ω,电阻R=3 Ω,重物质量m=0.10 kg,当将重物固定时,电压表的示数为5 V,当重物不固定,且电动机最后以稳定的速度匀速提升重物时,电压表的示数为5.5 V,求:
(1)电动机线圈的电阻R1
(2)电动机以稳定的速度匀速提升重物时,消耗的电功率
(3)重物匀速上升时的速度大小(不计摩擦,g取10 m/s2).
如图所示,在直角坐标系中,第二象限有一水平放置的平行板电容器,两板间距离为d,下极板与x轴重合,板间有图示方向的匀强磁场,磁感应强度为B,一带电粒子(不计重力)沿两板间中线射入并沿中线进入第一象限,若在第一象限只存在与y轴平行的匀强电场时,粒子刚好通过x轴上的M点(=d),若在第一象限只存在垂直于纸面的匀强磁场时,粒子也刚好通过M点,已知该电场强度和磁感应强度的比值为k,求:平行板电容器两极板间的电压为多少?
如图所示,在水平轨道右侧安放半径为R=0.2m的竖直圆形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为L=1m,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然状态.质量为m=1kg的小物块A(可视为质点)从轨道右侧以初速度v0=2 m/s冲上轨道,通过圆形轨道、水平轨道后压缩弹簧并被弹簧以原速率弹回,经水平轨道返回圆形轨道.物块A与PQ段间的动摩擦因数μ=0.2,轨道其他部分摩擦不计,重力加速度g=10m/s2.求:
(1)物块A与弹簧刚接触时的速度大小v1;
(2)物块A被弹簧以原速率弹回返回到圆形轨道的高度h1;
(3)调节PQ段的长度L,A仍以v0从轨道右侧冲上轨道,当L满足什么条件时,物块A能第一次返回圆形轨道且能沿轨道运动而不脱离轨道.
在粒子物理学的研究中,经常用电场和磁场来控制或者改变粒子的运动。一粒子源产生离子束,已知离子质量为m,电荷量为+e 。不计离子重力以及离子间的相互作用力。
(1)如图1所示为一速度选择器,两平行金属板水平放置,电场强度E与磁感应强度B相互垂直。让粒子源射出的离子沿平行于极板方向进入速度选择器。求能沿图中虚线路径通过速度选择器的离子的速度大小v。
(2)如图2所示为竖直放置的两平行金属板A、B,两板中间均开有小孔,两板之间的电压UAB随时间的变化规律如图3所示。假设从速度选择器出来的离子动能为Ek=100eV,让这些离子沿垂直极板方向进入两板之间。两极板距离很近,离子通过两板间的时间可以忽略不计。设每秒从速度选择器射出的离子数为N0 = 5×1015个,已知e =1.6×10-19C。从B板小孔飞出的离子束可等效为一电流,求从t = 0到t = 0.4s时间内,从B板小孔飞出的离子产生的平均电流I。
(3)接(1),若在图1中速度选择器的上极板中间开一小孔,如图4所示。将粒子源产生的离子束中速度为0的离子,从上极板小孔处释放,离子恰好能到达下极板。求离子到达下极板时的速度大小v,以及两极板间的距离d。
有一金属细棒ab,质量m=0.05kg,电阻不计,可在两条轨道上滑动,如图所示,轨道间距为L=0.5m,其平面与水平面的夹角为θ=37°,置于垂直于轨道平面向上的匀强磁场中,磁感应强度为B=1.0T,金属棒与轨道的动摩擦因数μ=0.5,(设最大静摩擦力与滑动摩擦力大小相等)回路中电源电动势为E=3V,内阻r=0.5Ω.(g=10m/s2,sin37°=0.6,cos37°=0.8)求:
(1)为保证金属细棒不会沿斜面向上滑动,流过金属细棒ab的电流的最大值为多少?
(2)滑动变阻器R的阻值应调节在什么范围内,金属棒能静止在轨道上?
在倾角θ=45°的斜面上,固定一金属导轨间距L=0.2m,接入电动势E=10V、内阻r=1Ω的电源,垂直导轨放有一根质量m=0.2kg的金属棒ab,它与框架的动摩擦因数μ=,整个装置放在磁感应强度的大小B=4(﹣1)T,方向垂直导轨平面向上的匀强磁场中,如图所示,若金属棒静止在导轨架上,其所受最大静摩擦力等于滑动摩擦力,框架与棒的电阻不计,g=10m/s2.求滑动变阻器R能接入电路的电大阻值.
如图,传送带AB总长为l=10cm,与一个半径为R=0.4m的光滑四分之一圆轨道BC相切于B点,传送带速度恒为v=6m/s,方向向右,现有一个滑块以一定初速度从A点水平滑上传送带,滑块质量为m=10kg,滑块与传送带间的动摩擦因数为μ=0.1,已知滑块运动到B端时,刚好与传送带同速,求:
(1)滑块的初速度,
(2)滑块能上升的最大高度h;
(3)求滑块第二次子啊传送带上滑行时,滑块和传送带系统产生的内能
如图,光滑水平直轨道上有三个质量均为m=1kg的物块A、B、C处于静止状态。 B的左侧固定一轻弹簧,弹簧左侧的挡板质量不计。现使A以速度v0=4m/s朝B运动,压缩弹簧;当A、 B速度相等时,B与C恰好相碰并粘接在一起,且B和C碰撞过程时间极短。此后A继续压缩弹簧,直至弹簧被压缩到最短。在上述过程中,求:
(1)B与C相碰后的瞬间,B与C粘接在一起时的速度;
(2)整个系统损失的机械能;
(3)弹簧被压缩到最短时的弹性势能。
如图所示,A、B为两块平行金属板,A板带正电、B板带负电。两板之间存在着匀强电场,两板间距为d、电势差为U,在B板上开有两个间距为L的小孔。C、D为两块同心半圆形的金属板,圆心都在贴近B板的处,C带正点、D带负电。两板间的距离很近,两板末端的中心线正对着B板上的小孔,两板间的电场强度可认为大小处处相等,方向都指向。半圆形金属板两端与B板的间隙可忽略不计。现从正对B板小孔靠近A板的O处由静止释放一个质量为m、电量为q的带正电微粒(微粒重力不计),问:
(1)微粒穿过B板小孔时的速度多大?
(2)为了使微粒能在CD板间运动而不碰板,CD板间的电场强度大小应该满足什么条件?
(3)从释放微粒开始,经过多长时间微粒通过半圆形金属板间的最低点P点?
一般教室的门上都按装一种暗锁,这种暗锁由外壳A.骨架B.弹簧C(劲度系数为)、锁舌D(倾斜角θ=45°,质量忽略不计)、锁槽E以及连杆、锁头等部件组成,如图甲所示(俯视图)。设锁舌D与外壳A和锁槽E之间的摩擦因数均为μ且最大静摩擦力与滑动摩擦力相等。有一次放学后,小明准备锁门,当他用某力拉门时,不能将门关上,此刻暗锁所处的状态如图乙所示,P为锁舌D与锁槽E之间的接触点,弹簧由于被压缩而缩短了,问:
(1)此时,外壳A对所舌D的摩擦力的方向。
(2)此时,锁舌D与锁槽E之间的正压力的大小。
(3)当满足一定条件时,无论用多大的力,也不能将门关上(这种现象称为自锁)。求暗锁能够保持自锁状态时μ的取值范围。
如图所示,水平绝缘地面上有一底部带有小孔的绝缘弹性竖直挡板AC,板高,与A端等高处有一水平放置的篮筐,圆形筐口的圆心M离挡板的距离,AC左端及A端与筐口的连线上方存在匀强磁场和匀强电场,磁场方向垂直纸面向里,磁感应强度;现有一质量、电量、直径略小于小孔宽度的带电小球(视为质点),以某一速度从C端水平射入场中做匀速圆周运动,若球可直接从M点落入筐中,也可与AC相碰后从M点落入筐中,且假设球与AC相碰后以原速率沿碰前速度的反方向弹回,碰撞时间不计,碰撞时电荷量不变,忽略小球运动对电场、磁场的影响()。求:
(1)电场强度的大小与方向;
(2)小球运动的最大速率;
(3)若小球与AC碰撞后从M点落入筐中,求小球运动时间最长时到达M点速度方向与水平方向夹角的正弦值。
如图所示,两块平行极板AB、CD正对放置,极板CD的正中央有一小孔,两极板间距离AD为d,板长AB为2d,两极板间电势差为U,在ABCD构成的矩形区域内存在匀强电场,电场方向水平向右。在ABCD矩形区域以外有垂直于纸面向里的范围足够大的匀强磁场。极板厚度不计,电场、磁场的交界处为理想边界。
将一个质量为m、电荷量为+q的带电粒子在极板AB的正中央O点,由静止释放。不计带电粒子所受重力。
(1)求带电粒子经过电场加速后,从极板CD正中央小孔射出时的速度大小;
(2)为了使带电粒子能够再次进入匀强电场,且进入电场时的速度方向与电场方向垂直,求磁场的磁感应强度的大小,并画出粒子运动轨迹的示意图。
(3)通过分析说明带电粒子第二次离开电场时的位置,并求出带电粒子从O点开始运动到第二次离开电场区域所经历的总时间。
如图所示,真空中有中间开有小孔的两平行金属板竖直放置构成电容器,给电容器充电使其两极板间的电势差,以电容器右板小孔所在位置为坐标原点建立图示直角坐标系xoy。第一象限内有垂直纸面向里的匀强磁场,磁场的上边界MN平行于x轴,现将一质量、且重力不计的带电粒子从电容器的左板小孔由静止释放,经电场加速后从右板小孔射出磁场,该粒子能经过磁场中的P点,P点纵坐标为。若保持电容器的电荷量不变,移动左板使两板间距离变为原来的四分之一,调整磁场上边界MN的位置,粒子仍从左板小孔无初速度释放,还能通过P点,且速度方向沿y轴正向。求磁场的磁感应强度B?