高中物理

如图所示,金属导轨 M N C P Q D M N P Q 平行且间距为 L ,所在平面与水平面夹角为 α N Q 连线与 M N 垂直, M P 间接有阻值为R的电阻;光滑直导轨 N C Q D 在同一水平面内,与 N Q 的夹角都为锐角 θ 。均匀金属棒 a b e f 质量均为 m ,长均为 L a b 棒初始位置在水平导轨上与 N Q 重合; e f 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为 μ μ 较小),由导轨上的小立柱1和2阻挡而静止。空间有方向竖直的匀强磁场(图中未画出)。两金属棒与导轨保持良好接触。不计所有导轨和 a b 棒的电阻, e f 棒的阻值为 R ,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为 g
image.png

(1)若磁感应强度大小为B,给 a b 棒一个垂直于 N Q 、水平向右的速度 v 1 ,在水平导轨上沿运动方向滑行一段距离后停止, e f 棒始终静止,求此过程 e f 棒上产生的热量;

(2)在(1)问过程中, a b 棒滑行距离为 d ,求通过 a b 棒某横截面的电荷量;

(3)若 a b 棒以垂直于 N Q 的速度 v 2 在水平导轨上向右匀速运动,并在 N Q 位置时取走小立柱1和2,且运动过程中 e f 棒始终静止。求此状态下最强磁场的磁感应强度及此磁场下 a b 棒运动的最大距离。

来源:2015年全国普通高等学校招生统一考试物理
  • 更新:2021-09-26
  • 题型:未知
  • 难度:未知

如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B的匀强磁场区域,MN和M′N′是匀强磁场区域的水平边界,边界的宽度为S,并与线框的bc边平行,磁场方向与线框平面垂直.现让金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象(其中OA、BC、DE相互平行)。已知金属线框的边长为L(L<S)、质量为m,电阻为R,当地的重力加速度为g,图象中坐标轴上所标出的字母v1、v2、t1、t2、t3、t4均为已知量.(下落过程中bc边始终水平)根据题中所给条件,以下说法正确的是:

A.t2是线框全部进入磁场瞬间,t4是线框全部离开磁场瞬间
B.从bc边进入磁场起一直到ad边离开磁场为止,感应电流所做的功为mgS
C.V1的大小可能为
D.线框穿出磁场过程中流经线框横截面的电荷量比线框进入磁场过程中流经框横截面的电荷量多

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,两条金属导轨相距L=1m,水平部分处在竖直向下的匀强磁场B1中,其中MN段平行于PQ段,位于同一水平面内,NN0段与QQ0段平行,位于与水平面成倾角37°的斜面内,且MNN0与PQQ0均在竖直平面内。在水平导轨区域和倾斜导轨区域内分别有垂直于水平面和斜面的匀强磁场B1和B2,且B1=B2=0.5T;ab和cd是质量均为m=0.2kg、电阻分别为Rab=0.5Ω和Rcd=1.5Ω的两根金属棒,ab置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,cd置于光滑的倾斜导轨上,均与导轨垂直且接触良好。从t=0时刻起,ab棒在水平外力F1作用下由静止开始以a=2m/s2的加速度向右做匀加速直线运动,cd棒在平行于斜面方向的力F2的作用下保持静止状态。不计导轨的电阻。水平导轨足够长,ab棒始终在水平导轨上运动,已知sin37°=0.6,cos37°=0.8,g=10m/s2。求:

(1)t=5s时,cd棒消耗的电功率;
(2)从t=0时刻起,2.0s内通过ab棒的电荷量q;
(3)规定图示F1、F2方向作为力的正方向,分别求出F1、F2随时间t变化的函数关系;
(4)若改变F1和F2的作用规律,使ab棒的运动速度v与位移x满足v=0.4x,cd棒仍然静止在倾斜轨道上,求ab棒从静止开始到x=5m的过程中,F1所做的功。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图甲所示,电阻不计的光滑平行金属导轨固定在水平面上,导轨间距L="0.5" m,左端连接R="0.5" Ω的电阻,右端连接电阻不计的金属卡环。导轨间MN右侧存在方向垂直导轨平面向下的磁场.磁感应强度的B-t图象如图乙所示。电阻不计质量为m="1" kg的金属棒与质量也为m的物块通过光滑滑轮由绳相连,绳始终处于绷紧状态。PQ、MN到右端卡环距离分别为17.5 m和15 m。t=0时刻由PQ位置静止释放金属棒,金属棒与导轨始终接触良好,滑至导轨右端被卡环卡住不动。(g取10 m/s2)求:

(1)金属棒进入磁场时受到的安培力
(2)在0~6 s时间内电路中产生的焦耳热

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,竖直悬挂的弹簧下端拴有导体棒ab,ab紧挨着竖直平行导轨的外侧,导体棒cd放在水平平行导轨上,整个装置处在竖直向下的匀强磁场中,磁感应强度为B。当cd以速度向右匀速运动时,ab恰好静止,弹簧无形变。现使cd的速度减半,但仍沿原方向匀速运动,则ab开始沿导轨下滑。若导轨宽度均为R,ab、cd质量相同,电阻均为R,其他电阻不计,导体棒与导轨接触良好,ab与导轨间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,弹簧进度系数为k,且始终处在弹性限度内,则

A.cd中电流方向从d到c
B.ab受到的安培力垂直纸面向里
C.ab开始下滑直至速度首次达峰值的过程中,克服摩擦产生热量为
D.ab速度首次达峰值时,ab上的电热功率为

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L=0.5m,上端接有阻值R=0.3Ω的电阻.匀强磁场的磁感应强度大小B=0.4T,磁场方向垂直导轨平面向上.一质量m=0.2kg,电阻r=0.1Ω的导体棒MN,在平行于导轨的外力F作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d=9m时,电阻R上消耗的功率为P=2.7W.其它电阻不计, g取10 m/s2.求:

(1)此时通过电阻R上的电流;
(2)这一过程通过电阻R上的电荷量q;
(3)此时作用于导体棒上的外力F的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某同学对某种抽水泵中的电磁泵模型进行了研究。如图电磁泵是一个长方体,ab边长为L1,左右两侧面是边长为L2的正方形,在泵头通入导电剂后液体的电阻率为ρ,泵体所在处有方向垂直向外的磁场B,把泵体的上下两表面接在电压为U(内阻不计)的电源上,理想电流表示数为I,若电磁泵和水面高度差为h,不计水在流动中和管壁之间的阻力,重力加速度为g。则

A.泵体上表面应接电源正极
B.电源提供的电功率为U2L1
C.电磁泵不加导电剂也能抽取不导电的纯水
D.在t时间内抽取水的质量为m,这部分水离开泵时的动能为
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,水平放置的三条光滑平行金属导轨a,b,c,相距均为d=1m,导轨ac间横跨一质量为m=1kg的金属棒MN,棒与导轨始终良好接触.棒的电阻r=2Ω,导轨的电阻忽略不计.在导轨bc间接一电阻为R=2Ω的灯泡,导轨ac间接一理想伏特表.整个装置放在磁感应强度B=2T匀强磁场中,磁场方向垂直导轨平面向下.现对棒MN施加一水平向右的拉力F,使棒从静止开始运动,试求:

(1)若施加的水平恒力F=8N,则金属棒达到稳定时速度为多少?
(2)若施加的水平外力功率恒定,棒达到稳定时速度为1.5m/s,则此时电压表的读数为多少?
(3)若施加的水平外力功率恒为P=20W,经历t=1s时间,棒的速度达到2m/s,则此过程中灯泡产生的热量是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,电阻不计的两光滑平行金属导轨相距L=1m,PM、QN部分水平放置在绝缘桌面上,半径a=0.9m的光滑金属半圆导轨处在竖直平面内,且分别在M、N处平滑相切, PQ左端与R=2Ω的电阻连接.一质量为m=1kg、电阻r=1Ω的金属棒放在导轨上的PQ处并与两导轨始终垂直.整个装置处于磁感应强度大小B=1T、方向竖直向上的匀强磁场中,g取10m/s2.求:

(1)若金属棒以v=3m/s速度在水平轨道上向右匀速运动,求该过程中棒受到的安培力大小;
(2)若金属棒恰好能通过轨道最高点CD处,求棒通过CD处时棒两端的电压;
(3)设LPM=LQN=3m,若金属棒从PQ处以3m/s匀速率沿着轨道运动,且棒沿半圆轨道部分运动时,回路中产生随时间按余弦规律变化的感应电流,求棒从PQ运动到CD的过程中,电路中产生的焦耳热.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,两足够长的平行光滑的金属导轨相距为m,导轨平面与水平面夹角,导轨电阻不计,磁感应强度为的匀强磁场垂直导轨平面向上,长为m的金属棒垂直于放置在导轨上,且始终与导轨接触良好,金属棒的质量为kg、电阻为Ω,两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为m,定值电阻为Ω,现闭合开关并将金属棒由静止释放,取m/s2,求:

(1)金属棒下滑的最大速度为多大?
(2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率为多少?
(3)当金属棒稳定下滑时,在水平放置的平行金属板间加一垂直于纸面向里的匀强磁场,在下板的右端且非常靠近下板的位置处有一质量为kg、所带电荷量为C的液滴以初速度水平向左射入两板间,该液滴可视为质点,要使带电粒子能从金属板间射出,初速度应满足什么条件?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在竖直向下的磁感应强度为B的匀强磁场中,两根足够长的平行光滑金属轨道MN、PQ固定在水平面内,相距为L。一质量为m的导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好。轨道和导体棒的电阻均不计。
(1)如图1,若轨道左端MP间接一阻值为R的电阻,导体棒在拉力F的作用下以速度v沿轨道做匀速运动。请通过公式推导证明:在任意一段时间Δt内,拉力F所做的功与电路获取的电能相等。

(2)如图2,若轨道左端接一电动势为E、内阻为r的电源和一阻值未知的电阻。闭合开关S,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度vm,求此时电源的输出功率。

(3)如图3,若轨道左端接一电容器,电容器的电容为C,导体棒在水平拉力的作用下从静止开始向右运动。电容器两极板电势差随时间变化的图象如图4所示,已知t1时刻电容器两极板间的电势差为U1。求导体棒运动过程中受到的水平拉力大小。
      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

受动画片《四驱兄弟》的影响,越来越多的小朋友喜欢上了玩具赛车.某玩具赛车充电电池的输出功率P随电流I变化的图象如图所示。

(1)求该电池的电动势E和内阻r;
(2)求该电池的输出功率最大时对应的外电阻R(纯电阻);
(3)由图象可以看出,同一输出功率P可对应两个不同的电流I1、I2,即对应两个不同的外电阻(纯电阻)R1、R2,试确定r、R1、R2三者间的关系。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与水平和竖直导轨之间有相同的动摩擦因数μ,导轨电阻不计,回路总电阻为2R,整个装置处于磁感应强度大小为B、方向竖直向上的匀强磁场中.当ab杆在平行于水平导轨的拉力作用下沿导轨向右匀速运动时,cd杆也正好以某一速度向下做匀速运动,设运动过程中金属细杆ab、cd与导轨接触良好,重力加速度为g,求:

(1)ab杆匀速运动的速度v1
(2)ab杆所受拉力F;
(3)ab杆以v1匀速运动时,cd杆以v2(v2已知)匀速运动,则在cd杆向下运动过程中,整个回路中产生的焦耳热.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,直线Ⅰ、Ⅱ分别是电源1与电源2的路端电压随输出电流变化的特性图线,曲线Ⅲ是一个小灯泡的伏安特性曲线.如果把该小灯泡先后分别与电源1和电源2单独连接时,则下列说法正确的是 (  )

A.在这两种连接状态下,小灯泡的电阻之比是1∶2
B.电源1和电源2的电动势之比是1∶1
C.在这两种连接状态下,小灯泡消耗的功率之比是1∶2
D.电源1和电源2的内阻之比是11∶7
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,把两个相同的灯泡分别接在甲、乙两种电路中,甲电路两端的电压为8V,乙电路两端的电压为14V。调节变阻器R1和R2使两灯都正常发光,此时变阻器消耗的功率分别为P1和P2。则下列关系中正确的是  (   )

A.P1>P2 B.P1<P2 C.P1=P2 D.无法确定
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中物理焦耳定律试题