如图所示,相互垂直的固定绝缘光滑挡板PO、QO,PO竖直放置,QO水平放置。a、b为两个带有同种电性的小球(可以近似看成点电荷),当用水平向左作用力F作用于b时,a、b紧靠挡板处于静止状态。现若稍改变F的大小,使b稍向左移动一小段距离,则当a、b重新处于静止状态后 ( )
A.a、b间电场力减小 | B.作用力F将减小 |
C.a的重力势能减小 | D.系统的电势能将减小 |
真空中有两个静止的点电荷,它们之间的作用力为F,若它们的带电量都增大为原来的3倍,距离减少为原来的1/3,它们之间的相互作用力变为
A.F/3 | B.F | C.9F | D.81F |
两个相同的金属小球,所带电荷大小之比为1:7,相距为r,两者相互接触后再放回原来的位置上,则它们之间的库仑力可能为原来的( )
A.4:7 | B.3:7 | C.16:7 | D.9:7 |
真空中两个点电荷,它们之间的静电力为F,如果将两个点电荷的距离增大为原来的2倍,电量都增大为原来的2倍。它们之间静电力的大小为 ( )
A.F/2 | B.F | C.2F | D.4F |
如图所示,水平地面上固定一个光滑绝缘斜面,斜面与水平面的夹角为θ。一根轻质绝缘细线的一端固定在斜面顶端,另一端系有一个带电小球A,细线与斜面平行。小球A的质量为m、电量为q。小球A的右侧固定放置带等量同种电荷的小球B,两球心的高度相同、间距为d。静电力常量为k,重力加速度为g,两带电小球可视为点电荷。小球A静止在斜面上,则下列说法中正确的是
A.小球A与B之间库仑力的大小为kq2/d |
B.当时,细线上的拉力为0 |
C.当时,细线上的拉力为0 |
D.当时,斜面对小球A的支持力为0 |
两个分别带有电荷量和+的相同金属小球(均可视为点电荷),固定在相距为的两处,它们之间的库仑力大小为。两小球相互接触后分开并将其固定距离变为,则现在两球间库仑力的大小为
A. | B. | C. | D. |
两个完全相同的金属小球A、B,球A所带电荷量为+5Q,球B所带电荷量为-Q.现将球B与球A接触后,移到与球A相距为d处(d远远大于小球半径).已知静电力常量为k,则此时两球A、B之间相互作用的库仑力大小是( )
A. B. C. D..
如图所示,光滑平面上固定金属小球A,用长L0的绝缘弹簧将A与另一个金属小球B连接,让它们带上等量同种电荷,弹簧伸长量为x1;若两小球电量各漏掉一半,弹簧伸长量变为x2,则有( )
A. | B. | C. | D. |
竖直面内固定一个V字形光滑绝缘支架如图所示,直杆AO、BO与水平面夹角都是,各套着一个质量均为m的小球,AO杆上小球带正电,电荷量为2q,BO杆上小球带正电,电荷量为q .让两个小球从同一高度自由释放,问下滑到离水平面多高时,两小球的速度达到最大?(静电力常量为k,两小球始终能看作点电荷)( )
A. | B. | C. | D. |
A、B、C三点在同一直线上,AB:BC=1:2,B点位于A、C之间,在B处固定一电荷量为Q的点电荷。当在A处放一电荷量为+q的点电荷时,它所受到的电场力为F;移去A处电荷,在C处放一电荷量为-2q的点电荷,其所受电场力为( )
A. F/2 B. F C.-F/2 D.-F
如图所示,两个质量分别为m1和m2的小球,各用细线悬挂在同一点.两个小球分别带有电荷量为q1和q2的同种电荷,两悬线与竖直方向的夹角分别是α和β,两球位于同一水平线上,则下列说法中正确的是
A.若m1=m2,则一定有α=β | B.若q1=q2,则一定有α=β |
C.若m1>m2,则一定有α<β | D.若q1>q2,则一定有α>β |
如图所示,一电子沿等量异种电荷的中垂线由A→O→B匀速飞过,电子重力不计,则电子除受电场力外,所受的另一个力的大小和方向变化情况是
A.先变大后变小,方向水平向左 | B.先变大后变小,方向水平向右 |
C.先变小后变大,方向水平向左 | D.先变小后变大,方向水平向右 |
两个带正电的小球,放在光滑的水平绝缘板上,它们相距一定距离.若同时释放两球,它们的加速度之比将
A.保持不变 | B.先增大后减小 | C.增大 | D.减小 |
图中虚线为一组间距相等的同心圆,圆心处固定一带正电的点电荷。一带电粒子以一定初速度射入电场,实线为粒子仅在电场力作用下的运动轨迹,a、b、c三点是实线与虚线的交点。则该粒子( )
A.该粒子带负电 |
B.在c点受力最大 |
C.在b点的电势能大于在c点的电势能 |
D.由a点到b点的动能变化等于由b点到c点的动能变化 |