小球从空中自由下落,与水平地面相碰后弹到空中某一高度,其速度—时间图象如图所示,则由图可知(g取10 m/s2) ( )
A.小球下落的高度2.5 m |
B.小球在从开始下落0.8 s内的平均速度大小是4 m/s,方向竖直向下 |
C.小球在从开始下落0.8 s内的位移为0.8 m,方向竖直向下 |
D.小球在从开始下落0.5 s内和后0.3 s内加速度大小相等,方向相同 |
甲、乙两物体分别从10m和20m高处同时自由落下,不计空气阻力,下面描述正确的是( )
A.落地时甲的速度是乙的1/2
B.落地的时间甲是乙的2倍
C.甲、乙两物体在最后1s内下落的高度相等
D 下落1s时甲的速度与乙的速度相同
地面某高处一物体开始做自由落体运动(不计空气阻力),若下落前一半路程所用的时间为t,则物体下落全程所用的时间为 ( )
A.t | B.4t | C.2t | D.2t |
如图所示,两端点分别为A、B、长L=1m的金属细杆在距地面H=40m处以v0=10m/s竖直上抛,同时在AB上方略微错开的竖直线上h处有一可视为质点的小球C由静止释放,不计空气阻力及落地后的运动,g取10m/s2,则可知
A.杆能上升的最大位移为10m
B.杆从抛出到落地共用时4s
C.若h=15m,则C与A相遇时杆的速度方向向下,与杆相遇共用时0.1s
D.若h=25m,则C与A相遇时杆的速度方向向下,与杆相遇共用时0.1s
物体从离地面45m高处做自由落体运动(g取10m/s2),则下列说法中正确的是
A.物体运动3s后落地 |
B.物体落地时的速度大小为30m/s |
C.物体在落地前最后1s内的位移为25m |
D.物体在整个下落过程中的平均速度为20m/s |
理论研究表明第二宇宙速度是第一宇宙速度的倍。火星探测器悬停在距火星表面高度为h处时关闭发动机,做自由落体运动,经时间t落到火星表面。已知引力常量为G,火星的半径为R。若不考虑火星自转的影响,要探测器脱离火星飞回地球,则探测器从火星表面的起飞速度至少为( )
A.7.9km/s | B.11.2km/s | C. | D. |
两物体在不同高度自由下落,同时落地,第一个物体下落时间为,第二个物体下落时间为,当第二个物体开始下落时,两物体相距( )
A. | B. | C. | D. |
某课外兴趣小组在探究小球从空中自由下落的有关物理现象时,得到小球自由下落并与水平地面相碰后发生反弹现象的v-t图像如图所示,则由图可知下列判断错误的是
A.小球下落的最大速度为5m/s |
B.小球第一次反弹后瞬间速度的大小为3m/s |
C.小球能弹起的最大高度为0.45m |
D.小球在0~0.8s内通过的位移大小为1.7m |
下列叙述中不符合历史事实的是( )
A.古希腊哲学家亚里士多德认为物体越重,下落得越快 |
B.伽利略发现亚里士多德的观点有自相矛盾的地方 |
C.伽利略认为,如果没有空气阻力,重物与轻物应该下落得同样快 |
D.伽利略用实验直接证实了自由落体运动是初速度为零的匀加速直线运动 |
雨滴从高空由静止下落,由于空气阻力作用,其加速度逐渐减小,直到变为零,在此过程中雨滴的运动情况是( )
A.速度不断减小,加速度为零时,速度最小 |
B.速度不断增大,加速度为零时,速度最大 |
C.速度一直保持不变 |
D.速度的变化率越来越大 |
甲物体的重量比乙物体大5倍,甲从H高处自由落下,乙从2H高处与甲物体同时自由落下,忽略空气阻力,在它们落地之前,下列说法中正确的是( )
A.两物体下落过程中,在同一时刻甲的速度比乙的速度大 |
B.各自下落时,它们的速度相同 |
C.下落过程中甲的加速度比乙的加速度大 |
D.甲乙经过同一高度处,它们的速度相同 |
如图所示,用小锤打击弹性金属片,A球沿水平方向抛出,同时B球自由下落,改变小球距地面的高度,多次实验均可观察到两球同时落地,这个实验现象说明A球( )
A.在水平方向上做匀速直线运动 |
B.在水平方向上做匀加速直线运动 |
C.在竖直方向上做匀速直线运动 |
D.在竖直方向上做自由落体运动 |
长为5 m的竖直杆的下端距离一竖直隧道口上沿5 m,若这隧道长也是5 m,让这根杆自由下落,杆能自由穿过隧道,g取10m/s2,则它通过隧道的时间为( )
A.(-1) s | B.s | C.(+1) s | D.(+1) s |
从地面竖直上抛一物体A的同时,在离地面高H处有相同质量的另一物体B开始做自由落体运动,两物体在空中同时到达距地面高h时速率都为v(两物体不会相碰),则下列说法正确的是( )
A.H =" 2" h
B.物体A竖直上抛的初速度大小是物体B落地时速度大小的2倍
C.物体A、B在空中运动的时间相等
D.两物体落地前各自的机械能都守恒且两者机械能相等