如图,一边长为 l 0 的正方形金属框 abcd 固定在水平面内,空间存在方向垂直于水平面、磁感应强度大小为 B 的匀强磁场。一长度大于 2 l 0 的均匀导体棒以速率 v 自左向右在金属框上匀速滑过,滑动过程中导体棒始终与 ac 垂直且中点位于 ac 上,导体棒与金属框接触良好。已知导体棒单位长度的电阻为 r ,金属框电阻可忽略。将导体棒与 a 点之间的距离记为 x ,求导体棒所受安培力的大小随 x ( 0 ⩽ x ⩽ 2 l 0 ) 变化的关系式。
某游乐园入口旁有一喷泉, 喷出的水柱将一质量为 M 的卡通玩具稳定地悬停在 空中。为计算方便起见,假设水柱从横截面积为 S 的喷口持续以速度 v0 竖直向上喷出; 玩具 底部为平板(面积略大于 S ); 水柱冲击到玩具底板后, 在竖直方向水的速度变为零, 在水平方向朝四周均匀散开。忽略空气阻力。已知水的密度为 ρ , 重力加速度大小为 g 。 求
(i) 喷泉单位时间内喷出的水的质量;
(ii)玩具在空中悬停时, 其底面相对于喷口的高度。
[物理——选修 3-3]
在水下气泡内空气的压强大于气泡表面外侧水的压强, 两压强差 Δ p 与气泡半径
r 之间的关系为 Δ p = 2 σ r , 其中 σ = 0 . 070 N / m 。现让水下 10 m 处一半径为 0 . 50 cm 的气泡缓慢上升,已知大气压强 p 0 = 1 . 0 × 10 5 Pa , 水的密度 ρ = 1 . 0 × 10 3 kg / m 3 , 重力加速度大小 g = 10 m / s 2 。
(i) 求在水下 10 m 处气泡内外的压强差;
(ii)忽略水温随水深的变化, 在气泡上升到十分接近水面时, 求气泡的半径与其原来半径之 比的近似值。
如图, 两固定的绝缘斜面倾角均为 θ , 上沿相连。两细金属棒 ab (仅标出 a 端 ) 和 cd (仅标出 c 端)长度均为 L , 质量分别为 2 m 和 m ; 用两根不可伸长的柔软导线将它们连 成闭合回路 abdca, 并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上, 使两金属棒 水平。右斜面上存在匀强磁场, 磁感应强度大小为 B , 方向垂直于斜面向上,已知两根导线刚 好不在磁场中, 回路电阻为 R , 两金属棒与斜面间的动摩擦因数均为 μ , 重力加速度大小为 g , 已知金属棒 ab 匀速下滑。
求:(1)作用在金属棒 ab 上的安培力的大小;
(2) 金属棒运动速度的大小。
用插针法测量上、下表面平行的玻璃砖的折射率。实验中用A、B两个大头针确定入射光路,C、D两个大头针确定出射光路, O 和 O ' 分别是入射点和出射点。如图(a)所示。测得玻璃砖厚度为 h = 15 . 0 mm ;A到过 O 点的法线 OM 的距离 AM = 10 . 0 mm , M 到玻璃砖的距离 MO = 20 . 0 mm , O ' 到 OM 的距离为 s = 5 . 0 mm 。
(ⅰ)求玻璃砖的折射率;
(ⅱ)用另一块材料相同,但上下两表面不平行的玻璃砖继续实验,玻璃砖的截面如图(b)所示。光从上表面入射,入射角从 0 逐渐增大,达到 45 ° 时,玻璃砖下表面的出射光线恰好消失。求此玻璃砖上下表面的夹角。
图中实线为一列简谐横波在某一时刻的波形曲线,经过 0 . 3 s 后,其波形曲线如图中虚线所示。已知该波的周期 T 大于 0 . 3 s 。若波是沿 x 轴正方向传播的,则该波的速度大小为 m / s ,周期为 s ;若波是沿 x 轴负方向传播的,该波的周期为 s 。