利用电动机通过如图所示的电路提升重物,已知电源电动势E=6 V,电源内阻r=1 Ω,电动机内阻r0=2Ω,电阻R=3 Ω,重物质量m=0.10 kg.当电动机以稳定的速度匀速提升重物时,电压表的示数为U="5.5" V。不计空气阻力和摩擦,取g=" 10" m/s2。求:(1)电源内电压U1;(2)重物匀速上升时的速度v。
质量为M的小车置于光滑水平面上,小车的上表面由光滑的1/4圆弧和光滑平面组成,圆弧半径为R,车的右端固定有一不计质量的弹簧。现有一质量为m的滑块(视为质点)从圆弧最高处无初速下滑,如图所示,与弹簧相接触并压缩弹簧。求:(1)弹簧具有最大的弹性势能;(2)当滑块与弹簧分离时小车的速度。
如图所示,位于竖直平面内的坐标系xoy,在其第三象限空间有沿水平方向的、垂直于纸面向外的匀强磁场,磁感应强度大小为B="0." 5T,还有沿x轴负方向的匀强电场,场强大小为E= 2N/C。在其第一象限空间有沿y轴负方向的、场强大小也为E的匀强电场,并在y>h=0.4m的区域有磁感应强度也为B的垂直于纸面向里的匀强磁场.一个带电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO作匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限.已知重力加速度g=10m/s2,问:(1)油滴在第一象限运动时受到的重力、电场力、洛伦兹力三力的大小之比,并指出油滴带何种电荷;(2)油滴在P点得到的初速度大小;(3)油滴在第一象限运动的时间以及油滴离开第一象限处的坐标值.
在消防演习中,消防队员从一根竖直的长直轻绳上由静止滑下,经一段时间落地.为了获得演习中的一些数据,以提高训练质量,研究人员在轻绳上端安装一个力传感器并与数据处理系统相连接,用来记录消防队员下滑过程中轻绳受到的拉力与消防队员重力的比值随时间变化的情况.已知某队员在一次演习中的收集的数据如图所示,(1)求该消防队员在下滑过程中的最大速度和落地速度各是多少?(g取10m/s2)(2)消防队员在下滑过程总位移?
如图所示,有一光滑的半径可变的1/4圆形轨道处于竖直平面内,圆心O点离地高度为H.现调节轨道半径,让一可视为质点的小球a从与O点等高的轨道最高点由静止沿轨道下落,使小球离开轨道后运动的水平位移S最大,求小球脱离轨道最低点时的速度大小。
如图所示,光滑半圆形轨道MNP竖直固定在水平面上,直径MP垂直于水平面,轨道半径R=0.5m。质量为m1的小球A静止于轨道最低点M,质量为m2的小球B用长度为2R的细线悬挂于轨道最高点P。现将小球B向左拉起,使细线水平,以竖直向下的速度v0=4m/s释放小球B,小球B与小球A碰后粘在一起恰能沿半圆形轨道运动到P点。两球可视为质点,g=10m/s2。试求①B球与A球相碰前的速度大小;②A、B两球的质量之比m1∶m2 .