如图所示,一台直流电动机所加电压为110 V,通过的电流为5 A。该电动机在10 s内把一个质量为50 kg的物体匀速提升了9 m高,求电动机的电功率和电动机线圈的电阻(不计摩擦,g取10 m/s2)。
如图为某同学设计的速度选择装置,两根足够长的光滑导轨MM/和NN/间距为L与水平面成θ角,上端接滑动变阻器R,匀强磁场B0垂直导轨平面向上,金属棒ab质量为m恰好垂直横跨在导轨上。滑动变阻器R两端连接水平放置的平行金属板,极板间距为d,板长为2d,匀强磁场B垂直纸面向内。粒子源能发射沿水平方向不同速率的带电粒子,粒子的质量为m0,电荷量为q,ab棒的电阻为r,滑动变阻器的最大阻值为2r,其余部分电阻不计,不计粒子重力。(1)ab棒静止未释放时,某种粒子恰好打在上极板中点P上,判断该粒子带何种电荷?该粒子的速度多大?(2)调节变阻器使R=0.5r,然后释放ab棒,求ab棒的最大速度?(3)当ab棒释放后达到最大速度时,若变阻器在r≤R≤2r范围调节,总有粒子能匀速穿过平行金属板,求这些粒子的速度范围?
如图,小球a、b质量均为,b球用长h的细绳(承受最大拉力为2.8mg)悬挂于水平轨道BC(距地高)的出口C处。a球从距BC高h的A处由静止释放后,沿ABC光滑轨道滑下,在C处与b球正碰并与b粘在一起。试问:(1)a与b球碰前瞬间的速度大小?(2)a、b两球碰后,细绳是否会断裂?(3)若细绳断裂,小球在DE水平地面上的落点距C的水平距离是多少?若细绳不断裂,小球最高将摆多高?
如右图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°.一质量为m、带电荷量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力).
一带电质点,质量为m、电荷量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第Ⅰ象限所示的区域(下图所示).为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xOy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径,重力忽略不计.
如图为质谱仪原理示意图,电荷量为q、质量为m的带正电的粒子从静止开始经过电压为U的加速电场后进入粒子速度选择器.选择器中存在相互垂直的匀强电场和匀强磁场,匀强电场的场强为E、方向水平向右.已知带电粒子能够沿直线穿过速度选择器,从G点垂直MN进入偏转磁场,该偏转磁场是一个以直线MN为边界、方向垂直纸面向外的匀强磁场.带电粒子经偏转磁场后,最终到达照相底片的H点.可测量出G、H间的距离为L,带电粒子的重力可忽略不计.求:(1)粒子从加速电场射出时速度v的大小.(2)粒子速度选择器中匀强磁场的磁感应强度B1的大小和方向.(3)偏转磁场的磁感应强度B2的大小.