如图所示,质量为mB=14kg的木板B放在水平地面上,质量为mA=10kg的木箱A放在木板B上。一根轻绳一端拴在木箱上,另一端拴在地面的木桩上,绳绷紧时与水平面的夹角为θ=37°。已知木箱A与木板B之间的动摩擦因数μ1=0.5,木板B与地面之间的动摩擦因数μ2=0.4。重力加速度g取10m/s2。现用水平力F将木板B从木箱A下面匀速抽出,试求:(sin37°=0.6,cos37°=0.8)(1)绳上张力FT的大小;(2)拉力F的大小。
如图甲所示,在磁感应强度为B的水平匀强磁场中,有两根竖直放置相距为L平行光滑的金属导轨,顶端用一阻直为R的电阻相连,两导轨所在的竖直平面与磁场方向垂直。一根质量为m的金属棒从静止开始沿导轨竖直向下运动,当金属棒下落龙时,速度达到最大,整个过程中金属棒与导轨保持垂直且接触良好。重力加速度为g,导轨与金属棒的电阻可忽略不计,设导轨足够长。求:(l)通过电阻R的最大电流;(2)从开始到速度最大过程中,金属棒克服安培力做的功WA;(3)若用电容为C的平行板电容器代替电阻R,如图乙所示,仍将金属棒从静止释放,经历时间t的瞬时速度v1。
如图所示,在石轴上方存在匀强磁场,磁感应强度为B,方向垂直纸面向内。在x轴下方存在匀强电场,方向竖直向上。一个质量为m,电荷量为q,重力不计的带正电粒子从y轴上的a(h、0)点沿y正方向以某初速度开始运动,一段时间后,粒子与x轴正方向成45°进入电场,再次经过y轴的b点时速度方向恰好与y轴垂直。求:(1)粒子在磁场中运动的轨道半径厂和速度大小v1;(2)匀强电场的电场强度大小E;(3)粒子从开始到第三欢经过x轴的时间t总
如图甲所示,质量m="l" kg的物块在平行斜面向上的拉力尸作用下从静止开始沿斜面向上运动,t=0.5s时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v-t图象)如图乙所示,g取l0m/s2,求:(1)2s内物块的位移大小s和通过的路程L;(2)沿斜面向上运动两个阶段加速度大小a1、a2和拉力大小F。
如图所示,在足够长的绝缘板MN上方距离为d的O点处,水平向左发射一个速率为v0,质量为、电荷为的带正电的粒子(不考虑粒子重力)。(1)若在绝缘板上方加一电场强度大小为、方向竖直向下的匀强电场,求带电粒子打到板上距P点的水平距离(已知);(2)若在绝缘板的上方只加一方向垂直纸面,磁感应强度的匀强磁场,求:①带电粒子在磁场中运动半径; ②若O点为粒子发射源,能够在纸面内向各个方向发射带电粒子(不考虑粒子间的相互作用),求发射出的粒子打到板上的最短时间。
如图所示为质谱仪上的原理图,M为粒子加速器,电压为U1=5000V;N为速度选择器, 磁场与电场正交,磁感应强度为B1=0.2T,板间距离为d =0.06m;P为一个边长为l的正方形abcd的磁场区,磁感应强度为B2=0.1T,方向垂直纸面向外,其中dc的中点S开有小孔,外侧紧贴dc放置一块荧光屏。今有一比荷为的正离子从静止开始经加速后,恰好通过速度选择器,从a孔以平行于ab方向进入abcd磁场区,正离子刚好经过小孔S 打在荧光屏上。求:(1)粒子离开加速器时的速度v;(2)速度选择器的电压U2;(3)正方形abcd边长l。