如图所示,位于竖直平面上的1/4光滑轨道,半径为R,OB沿竖直方向,圆弧轨道上端A点距地面高度为H,质量为m的小球从A点由静止释放,最后落在地面C点处,不计空气阻力。求:(1) 小球刚运动到B点时,轨道对小球的支持力多大? (2) 小球落地点C与B的水平距离S为多少?(3) 比值R/H为多少时,小球落地点C与B水平距离S最远? 该水平距离的最大值是多少?
在研究摩擦力的实验中,将木块放在水平长木板上,如图(a)所示,用力沿水平方向拉木块,拉力从零开始逐渐增大。分别用力传感器采集拉力和木块所受到的摩擦力,并用计算机绘制出摩擦力Ff 随拉力F的变化图像,如图(b)所示。已知木块质量为8.0kg,重力加速度g=10m/s2,sin37°=0.60,cos37°=0.80。 (1)求木块与长木板间的动摩擦因数; (2)如图(c),木块受到恒力F=50N 作用,方向与水平成θ=37°角斜向右上方,求木块从静止开始沿水平面做匀变速直线运动的加速度; (3)在(2)中拉力F作用2.0s后撤去,计算再经过多少时间木块停止运动?整个运动过程中摩擦力对木块做了多少功?
如图所示,固定于水平桌面上足够长的两平行导轨PO、MN,PQ、MN的电阻不计,间距为d=0.5m.P、M两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B=0.2T的匀强磁场中.电阻均为r=0.1Ω,质量分别为m1=300g和m2=500g的两金属棒L1、L2平行的搁在光滑导轨上,现固定棒L1,L2在水平恒力F=0.8N的作用下,由静止开始做加速运动,试求: (1)当电压表的读数为U=0.2V时,棒L2的加速度多大? (2)棒L2能达到的最大速度vm. (3)若在棒L2达到最大速度vm时撤去外力F,并同时释放棒L1,求棒L2达到稳定时的速度值. (4)若固定棒L1,当棒L2的速度为v,且离开棒L1距离为S的同时,撤去恒力F,为保持棒L2做匀速运动,可以采用将B从原值(B0=0.2T)逐渐减小的方法,则磁感应强度B应怎样随时间变化(写出B与时间t的关系式)?
如图甲所示,空间有一宽为2L的匀强磁场区域,磁感应强度为B,方向垂直纸面向外.abcd是由均匀电阻丝做成的边长为L的正方形线框,总电阻为R.线框以垂直磁场边界的速度v匀速通过磁场区域.在运动过程中,线框ab、cd两边始终与磁场边界平行.线框刚进入磁场的位置x=0,x轴沿水平方向向右.求: (1)cd边刚进入磁场时,ab两端的电势差,并指明哪端电势高; (2)线框穿过磁场的过程中,线框中产生的焦耳热; (3)在下面的乙图中,画出ab两端电势差Uab随距离变化的图象.其中U0=BLv0.
如图所示导体棒ab质量为100g,用绝缘细线悬挂后,恰好与宽度为50cm的光滑水平导轨良好接触.导轨上放有质量为200g的另一导体棒cd,整个装置处于竖直向上的磁感强度B=0.2T的匀强磁场中,现将ab棒拉起0.8m高后无初速释放.当ab第一次摆到最低点与导轨瞬间接触后还能向左摆到0.45m高处,求: ⑴cd棒获得的速度大小; ⑵瞬间通过ab棒的电量; ⑶此过程中回路产生的焦耳热.
如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成θ角固定放置,底端接一阻值为R的电阻,在轨道平面内有磁感应强度为B的匀强磁场,方向垂直轨道平面斜向上.现有一平行于ce、垂直于导轨、质量为m、电阻不计的金属杆ab,在沿轨道平面向上的恒定拉力F作用下,从底端ce由静止沿导轨向上运动,当ab杆速度达到稳定后,撤去拉力F,最后ab杆又沿轨道匀速回到ce端.已知ab杆向上和向下运动的最大速度相等.求:拉力F和杆ab最后回到ce端的速度v.