做平抛运动的物体,在落地前的最后1 s内,其速度方向由跟竖直方向成60°角变为跟竖直方向成45°角,求物体抛出时的初速度和下落的高度.
如图所示,水平放置的平行金属板A和B间的距离为d,极长L=d,B板的右侧边缘恰好是倾斜挡板NM上的一个小孔K,NM与水平挡板NP成60°角,K与N间的距离。现有一质量为m、电荷量为q的带正电的粒子,从AB的中点O以平行于金属板方向OO'的速度v0射入,不计粒子的重力。现在A、B板上加一恒定电压,则该粒子穿过金属板后恰好穿过小孔K:(1)求A、B板上所加的恒定电压大小。(2)求带电粒子到达K点的速度。(3)在足够长的NM和NP两档板所夹的某一区域存在一垂直纸面向里的匀强磁场,使粒子经过磁场偏转后能垂直打到水平挡板NP上(之前与挡板没有碰撞),求该磁场的磁感应强度的最小值Bmin。
如图所示,质量mA=1kg的小物块以向右VA=4.0m/s的初速度滑上质量mB=1.0kg以向左初速度VB=5.0m/s的长木板,已知A、B之间的动摩擦因数μ1="0.20" ,B与地面之间的动摩擦因数μ2=0.40,整个过程中小物块并未从长木板上滑下,g取10 m/s2。则:(1)求小物块A刚滑上长木板B时,小物块与长木板的加速度。(2)求从小物块A刚滑上长木板B到二者刚好相对静止时小物块的位移的大小。
如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和II,两电场的边界均是边长为L的正方形(不计电子所受重力).(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置.(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置.(3)若将左侧电场II整体水平向右移动L/n(n≥1),仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I区域内由静止释放电子的所有位置.
如图3所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿Y轴负方向的匀强电场,第四象限内无电场和磁场。质量为m、带电量为q的粒子从M点以速度v0沿x轴负方向进入电场,不计粒子的重力,粒子经N、P最后又回到M点。设OM=L,ON=2L,则: 关于电场强度E的大小,下列结论正确的是 ( )
(2)匀强磁场的方向是 。 (3)磁感应强度B的大小是多少?
如图1所示,图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B的匀强磁场,方向垂直纸面向外。O是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向。已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力及粒子间的相互作用。 (1)求所考察的粒子在磁场中的轨道半径; (2)求这两个粒子从O点射入磁场的时间间隔。