为了安全,在高速公路上行驶的汽车之间应保持必要的距离.已知某段高速公路的最高限速v=108 km/h,假设前方车辆突然停止,后面车辆司机从发现这一情况起,经操纵刹车到汽车开始减速经历的时间(即反应时间)t=0.50 s,刹车时汽车受到阻力的大小为汽车重力的0.50倍.该段高速公路上以最高限速行驶的汽车,至少应保持的距离为多大?取g=10 m/s2.
如图所示,ABCD为固定在竖直平面内的轨道,AB段光滑水平,BC段为光滑圆弧,对应的圆心角θ=37º,半径r=2.5m,CD段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E=2×105 N/C、方向垂直于斜轨向下的匀强电场。质量m=5×10-2 kg、电荷量q=+1×10-6 C的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑行,在C点以速度v0=3 m/s冲上斜轨。以小物体通过C点时为计时起点,0.1s以后,场强大小不变,方向反向。已知斜轨与小物体间的动摩擦因数μ=0.25。设小物体的电荷量保持不变,取g=10 m/s2,sin37º=0.6,cos37º=0.8。 (1)求弹簧枪对小物块所做的功; (2)在斜轨上小物体能到达的最高点为P,求CP的长度。
如图所示,一根长为l=1.5 m的绝缘细直杆MN,竖直固定在场强为E=1.0×105 N/C、与水平方向成θ=37°角的倾斜向上的匀强电场中。杆的下端M固定一个带电小球A,电荷量Q=+4.5×10-6 C;另一带电小球B穿在杆上可自由滑动,电荷量q=+1.0×10-6 C,质量m=1.0×10-2 kg,与杆之间的动摩擦因数μ=0.1。现将小球B从杆的上端N静止释放,小球B开始运动。(静电力常量k=9.0×109 N·m2/C2。取g=10 m/s2;sin37º=0.6,cos37º=0.8) (1)小球B开始运动时的加速度为多大; (2)小球B的速度最大时,距M端的高度h为多大; (3)若小球B在下落过程中的最大速度为m/s,则从开始下落到速度达到最大的过程中,小球B的电势能改变了多少。
如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷量为q(q>0)的质点沿轨道内侧运动,经过a点和b点时对轨道压力的大小分别为Na和Nb。不计重力,求电场强度的大小E、质点经过a点和b点时的动能。
出租车上安装有速度表,计价器里安装有里程表和时间表。出租车载客后,从高速公路入口处驶入高速公路,并从10时10分55秒开始做初速度为零的匀加速直线运动,经过10s时,速度表显示54km/h。(1)求这时出租车离出发点的距离;(2)出租车继续做匀加速直线运动,当速度表显示108km/h时,出租车开始做匀速直线运动,若时间表显示10时12分35秒,此时计价器里程表示数应为多少?(出租车启动时,里程表示数为零)
猎豹是目前世界上在陆地奔跑速度最快的动物,时速可达110多公里,但不能维持长时间高速奔跑,否则会因身体过热而危及生命。猎豹在一次追击猎物时(如图),经4s速度由静止达到最大,然后匀速运动保持了4s仍没追上猎物,为保护自己它放弃了这次行动,以3m/s2的加速度减速,经10s停下,设此次追捕猎豹始终沿直线运动.求:(1)猎豹加速时的平均加速度.(2)猎豹奔跑的最大速度.