质量m=0.2kg的物体从高H=20m的楼顶由静止开始下落,经过时间t=2.5s后着地,(g=10m/s2),求:(1) 物体受到的空气阻力的大小(2)重力对物体做的功和空气阻力对物体做的功(3)合外力对物体做的功(4)刚要着地时重力的瞬时功率
在倾角θ=30°的斜面上,固定一金属框,宽L=0.5 m,接入电动势E =12V、内阻不计的电池和滑动变阻器。垂直框面放有一根质量m=0.1kg,电阻为r=1.6Ω的金属棒ab,不计它与框架间的摩擦力,不计框架电阻。整个装置放在磁感应强度B=0.8T,垂直框面向上的匀强磁场中,如图所示,调节滑动变阻器的阻值,当R的阻值为多少时,可使金属棒静止在框架上?(假设阻值R可满足需要)(g="10" m/s2)
如图所示,质量M=8.0kg、长L=2.0m的薄木板静置在光滑水平地面上,且木板不固定。质量m=0.40kg的小滑块(可视为质点)以速度v0从木板的左端冲上木板。已知滑块与木板间的动摩擦因数μ=0.20,(假定滑块与木板之间最大静摩擦力与滑动摩擦力相等,重力加速度g取10m/s2。)(1)若v0=2.1m/s,从小滑块滑上长木板,到小滑块与长木板相对静止,小滑块的位移是多少?(2)若v0=3.0m/s,在小滑块冲上木板的同时,对木板施加一个水平向右的恒力F,如果要使滑块不从木板上掉下,力F应满足什么条件?
如图1所示,t=0时,质量为0.5kg的物体从倾角的斜面上A点由静止开始下滑,经过B点后进入水平面(经过B点前后速度大小不变),最后停在C点。运动过程中速度的大小随时间的关系如图2所示(重力加速度g=10 m/s2,sin37°=0.6,cos 37°=0.8)求:(1)物体在斜面上的加速度和在水平面上的加速度;(2)经过多长时间物体恰好停在C点?(3)物体通过的总路程是多少?
如图所示,一小球(可视为质点)自平台上水平抛出,恰好落在临近平台的一倾角为α=37°的斜面顶端,并刚好沿斜面下滑,已知斜面顶端与平台的高度差h=0.45 m,求:(重力加速度g取10 m/s2,sin37°=0.6,cos 37°=0.8)(1)小球水平抛出的初速度v0是多少?(2)斜面顶端与平台边缘的水平距离s是多少?
如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53o的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值为R=0.4Ω的定值电阻,上端开口。整个空间有垂直斜面向上的匀强磁场,磁感应强度B=2T.一质量为m=0.5kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1Ω,电路中其余电阻不计.现用一质量M=2.86kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放M,当M下落高度h=2.0m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好).不计空气阻力,sin53o=0.8,cos53o=0.6,g取10m/s2.求(1)ab棒沿斜面向上运动的最大速度Vm(2)ab棒从开始运动到匀速运动的这段时间内流过电阻R的总电荷量q.(3)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热QR